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Abstract: We investigate the (1+1)-dimensional position-dependent mass Dirac
equation within the confines of so(2,1) potential algebra by utilizing the character of
a spatial varying Fermi velocity. We examine the combined effects of the two when
the Dirac equation is equipped with an external pseudoscalar potential. Solutions of
the three cases induced by so(2, 1) are explored by profitably making use of a point
canonical transformation.
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1 Introduction

Study of Dirac equation has been of perennial interest in problems of relativistic and
non-relativistic quantum mechanics [1]. It has found numerous applications in many areas
of physics including the ones that give physical understanding of the properties of charge
carriers of graphene’s electronic structure (see, for example, [2–7]).

In recent times, the Dirac equation with a varying mass has received particular attention
in the light of wave packet dynamics and effective envelopes of wave propagation in
topological materials [8–11]. The need for a consistent treatment of position-dependent mass
(PDM) in an effective Hamiltonian was initially taken up by von Roos [12] while examining
the dynamics of free carriers in semiconductors of nonuniform chemical composition. In
the ensuing decades, the general interest in PDM problems has gradually grown as is
evidenced from the huge amount of literature accumulated in relation to compositionally
graded crystals [13], quantum dots [14], liquid crystals [15] and other theoretically appealing
contexts [16,17]. In a PDM setting, one has to confront an extended form of the Schrödinger
equation that depends on a wide range of effective potentials containing different choices
of ambiguity parameters [18–21]. The presence of such ambiguity parameters has indeed
opened up many pathways for exploration (see, for example, [22–27]). In particular, Quesne
used extensively the point canonical transformation (PCT) to analyze different variants of
systems endowed with PDM [28–31].
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Because of a gap formation in graphene [32] the need to include a spatially varying
Fermi velocity was pointed out by Downing and Portnoi in [33]. Tunneling spectroscopy
experiments also confirmed this issue [34–36]. From a theoretical side, the necessity of a
local Fermi velocity (LFV) was subsequently examined in [37–40], which included a study
on the electronic transport in two-dimensional strained Dirac materials [41]. Of course,
results on the constant Fermi velocity case with respect to the scalar shape-invariant
Schrödinger Hamiltonians relevant to a class of Dirac-like matrix Hamiltonians exist for
the stationary 1-dimensional Dirac equation with pseudoscalar potentials [42].

In this paper we propose to inquire into the working of the combination of PDM and LFV
in the (1+1)- dimensional Dirac equation following the framework of an so(2,1) potential
algebra. The algebraic use of the corresponding Casimir to facilitate generating exactly
solvable potentials is known for a long time due to the ground laying works of Alhassid et
al [43–47] and also of some other ventures who have explored more general possibilities for
the group generators [48–52]. Additionally, [53] discussed how such generators are modified
when the PDM restriction is imposed upon them.

The paper is organised as follows. The next section summarizes the basic role of the
so(2, 1) algebra in a PDM background. We follow up in section 3 by writing down the PDM
Dirac equation with LFV enforced and give a mathematical formulation of the scheme
in terms of a pair of coupled differential equations corresponding to the wavefunctions
embodying a two-component spinor. In section 4, we give the complete classification of
the associated pseudoscalar potentials for the three cases induced by so(2, 1). Finally, in
section 5, some concluding remarks are presented.

2 so(2,1) algebra in a PDM background

In this section we sketch briefly the results of [53]. In the PDM framework the kinetic
energy operator T̂ is given by [12]

T̂ =
1

4
(µη(x)p̂µβ(x)p̂µγ(x) + µγ(x)p̂µβ(x)p̂µη(x)), p̂ = −i~ ∂

∂x
, (2.1)

where µ(x) is the mass function and the ambiguity parameters η, β and γ are constrained
by the relation

η + β + γ = −1 (2.2)

to ensure Hermiticity of T̂ . The above representation of T̂ is of course not unique but
implementation of other choices does not lead to much new physics [54].

Setting µ(x) = µ0M(x), where M(x) is a positive dimensionless function, and adopting
units ~ = 2µ0 = 1, the time-independent modified Schrödinger equation corresponding to
(2.1) acquires the form

Hψ(x) =
[
− d

dx

1

M(x)

d

dx
+ Veff(x)

]
ψ(x) = Eψ(x) (2.3)

with an associated energy E. The effective potential Veff(x) depends on M(x) and the
given potential field V(x) in the manner

Veff(x) = V(x) +
1

2
(β + 1)

M ′′

M2
− (η(η + β + 1) + β + 1)

M ′2

M3
, (2.4)

where the primes correspond to spatial derivatives. Equation (2.3) is in quite general form
in that it involves the presence of all the parameters η, β, γ subject to their obeying (2.2).
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Turning to the employment of the so(2, 1) algebra, its signature commutation relations
defined in terms of its generators J+, J−, J0 are

[J+, J−] = −2J0, [J0, J±] = ±J± (2.5)

Furthermore, an irreducible representation of the potential algebra so(2,1) corresponding
to the type D+

k has basis states that point to the eigenfunctions of different Hamiltonians,
having the same energy level. The basis kets |ks〉 are simultaneous eigenstates of the
operators J0 and J2

J0|ks〉 = s|ks〉, J2|ks〉 = k(k − 1)|ks〉, s = k, k + 1, k + 2, . . . . (2.6)

Similar in spirit to the representations of J0 and J± formulated by Englefield and
Quesne [49], the following ones were proposed in [53] in the context of PDM that satisfy
the algebra (2.5)

J0 = −i ∂
∂φ
, (2.7)

J± = e±iφ
[
± 1√

M

∂

∂x
+ F (x)

(
i
∂

∂φ
∓ 1

2

)
+G(x)

]
, (2.8)

where φ is an auxiliary parameter and an appropriate change of variable has been made to
bring the generators in one to one correspondence with the constant mass case. Note that
the basis kets can be expressed in the form |ks〉 = χks(x)eisφ. The resulting constraints on
F (x), G(x) are related by the coupled equations

F ′ =
√
M(1− F 2), G′ = −

√
MFG. (2.9)

The Casimir J2 is defined by

J2 = J2
0 ∓ J0 − J±J∓, (2.10)

which in terms of the representations (2.7) and (2.8) cast the extended Schrödinger equation
(2.3) in the form

Hχ(x) ≡
[
− 1√

M

d

dx

1√
M

d

dx
+ Vs(x)

]
χ(x) = Ekχ(x) (2.11)

where χ(x) ≡ χks(x) and Ek is given by

Ek = −
(
k − 1

2

)2

, k = 0, 1, 2, . . . . (2.12)

In (2.11) the one-parameter family of potentials stands for1

Vs =
1√
M

[(
1

4
− s2

)
F ′ + 2sG′

]
+G2, s = k, k + 1, k + 2, . . . . (2.13)

Thus so(2, 1) as a potential algebra defines the above class of potentials in a PDM back-
ground induced by the mass function M(x) and conforming to the same set of energy
eigenvalues Ek. Observe that the ambiguity parameters remain with Veff .

1There are some serious misprints in [53]. For instance, there is the factor 1√
M

missing in (9) while the

fraction in the coefficient of F ′ should read 1
4
.
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Finally, noting that χ(x) = χks(x) are the eigenfunctions of different Hamiltonians but

conform to the same energy level [49, 53], we transform χ(x)→ [M(x)]−
1
4ψ(x), to rewrite

(2.11) in the manner[
− d

dx

1

M

d

dx
+

M ′′

4M2
− 7M ′2

16M3
+ Vs(x)

]
ψ(x) = Ekψ(x). (2.14)

(2.14) can be looked upon as an alternative but equivalent equation to (2.11). Observe
that in the present scenario the ambiguity parameters are arbitrary and remain with
Veff . In (2.14), Vs plays the role of the effective potential. This point is exploited later.
Various other choices have been explored in the literature which are special cases of the
von Roos. These include the BenDaniel-Duke [55] (η = γ = 0, β = −1), Zhu–Kroemer [56]
(η = γ = −1

2 , β = 0) and Mustafa–Mazharimousavi [19] (η = γ = −1
4 , β = −1

2) orderings.
Actually, the last two are only two physically allowed possibilities to choose η, β and γ in
(2.1) and that these are the only parametrizations that pass the Dutra-Almeida test [22] as
good orderings.

3 PDM Dirac equation with LFV

In the standard form of the Dirac Hamiltonian [57,58]

HD = vfσxp̂x + σyW (x) + σzm0v
2
f + 1V (x), (3.1)

where p̂x = −i ∂∂x , m0 corresponds to a constant mass spin-1
2 -particle and vf is the constant

Fermi velocity. Other quantities appearing in (3.1) are the electrostatic potential V (x),
the pseudoscalar potential W (x) and the block-diagonal unit matrix 1, while the Pauli
matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.2)

In the following study, we will ignore the effects of V as indeed suggested by the analysis
of [57,59] through the use of intertwining operators.

The introduction of PDM and the Fermi velocity signified by m(x) and vf (x), respec-
tively, operating as local variables necessitates a modification of HD. In such a situation,
the Dirac Hamiltonian transforms to

HD =
√
vf (x)σxp̂x

√
vf (x) + σyW (x) + σzm(x)v2

f (x), (3.3)

where m = m(x) and vf = vf (x). Put in the two-dimensional matrix form, HD reads

HD =

(
mv2

f −i√vf∂
√
vf − iW

−i√vf∂
√
vf + iW −mv2

f

)
. (3.4)

When applied on a spinor whose components are (ψ+ ψ−)T , this gives

(
mv2

f −i√vf∂
√
vf − iW

−i√vf∂
√
vf + iW −mv2

f

)(
ψ+

ψ−

)
= E

(
ψ+

ψ−

)
, (3.5)
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where E is the energy eigenvalue. Explicitly we have the set of coupled equations

(−i√vf∂
√
vf − iW )ψ− = D−ψ+, (3.6)

(−i√vf∂
√
vf + iW )ψ+ = D+ψ−, (3.7)

where the quantities D± correspond to D± = E ±mv2
f . When disentangled, the equation

for the upper component ψ+ becomes

−
v2
f

D+
ψ′′+ −

( v2
f

D+

)′
ψ′+ +

[ 1

D+

(
W 2 − 1

4
v′f

2 − 1

2
vfv
′′
f

)
+ vf

( W
D+

)′
−1

2
vfv
′
f

( 1

D+

)′]
ψ+ = D−ψ+ (3.8)

and a similar one holds for ψ− on elimination of ψ+ from (3.6) and (3.7). In (3.8) the
primes refer to the derivatives with respect to the variable x. In the following we will focus
on (3.8).

Making use of Mustafa’s constancy condition [37]

m(x)v2
f (x) = A, (3.9)

where A is a positive constant, enables us to get rid of the explicit presence of m(x) in
(3.8). In other words, we are led to the equation[

− d

dx
v2
f

d

dx
+
(
W 2 − 1

4
v′f

2 − 1

2
vfv
′′
f + vfW

′
)]
ψ+ =

(
E2 −A2

)
ψ+. (3.10)

Equation (3.10) is in direct correspondence with the PDM-induced Schrödinger equation
(2.14). The connection

v2
f (x) =

1

M(x)
(3.11)

is obvious. Further, comparing (3.9) and (3.11), A may be interpreted as the ratio of the
(physical) Dirac mass and the auxiliary mass M(x).

Apart from (3.11), the following consistency relations are valid too

W 2 − 1

4
v′f

2 − 1

2
vfv
′′
f + vfW

′ = Vs +
M ′′

4M2
− 7M ′2

16M3
, (3.12)

E2 = A2 −
(
k − 1

2

)2

, k = 0, 1, 2, . . . . (3.13)

To get real energies, one must have the criterion A2 ≥ (k − 1
2)2. A is kept arbitrary2 but

subject to satisfying this condition.
Using (3.11) we also easily verify

M ′′

4M2
− 7M ′2

16M3
= −1

4
v′f

2 − 1

2
vfv
′′
f . (3.14)

Therefore the remaining part of the equation (3.12) can be projected as follows

W 2 + vfW
′ = Vs. (3.15)

Equation (3.15) is in the Riccati form. This result is new and is central to our present
work. A point to note is that in [60], where a study was made in connection with deformed
shape invariance condition of supersymmetric quantum mechanics, the role of vf (x) was
played by the deforming function f(x) appearing there.

2Assuming A = 1 would be rather restrictive in the sense that E2 would be constrained to values ≤ 1.
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4 Classification of pseudoscalar potentials

It was shown in [53] that the sign of the quantity ω = F 2−1
G2 dictates the different choices

of F and G that satisfy (2.9). That only three choices could be made for F and G
was first pointed out in [49] in realizing the dynamical potential algebras for certain
types of potentials that later found relevance in the contexts of supersymmetric quantum
mechanics [61] and parity-time symmetric theories [50,51]. The results are summarized
below

ω = − 1

b2
< 0 : F (x) = tanh[u(x)− c], G(x) = b sech[u(x)− c], (4.1)

ω = 0 : F (x) = ±1, G(x) = be∓u(x), (4.2)

ω =
1

b2
> 0 : F (x) = coth[u(x)− c]. G(x) = b cosech[u(x)− c], (4.3)

where b is a real constant, and the quantity u(x) appears due to the following PCT

u(x)− c =

∫ x√
M(t)dt, (4.4)

c being a real constant. It is introduced to get rid of the factor 1√
M

in the expressions of the

two generators in (2.8). For more elaboration on the PCT concerning its application side
we refer to [28]. The potentials corresponding to the three types of solutions (4.1) - (4.3)
have the same eigenvalues and their common properties extend to the calculation of the
wave functions. Here we point out that the respective wave functions can be determined
first by solving the operator relation J−χ0e

ikφ = 0 for χ0 ≡ χkk and then recursively
χn = χk,k+n, n = 1, 2, ..., by evaluating J+

nχ0e
ikφ. The resulting chain of solutions are [53]

χ0 ∼ Gk−
1
2 e

∫ √
MGdx (4.5)

χ1 ∼ [G− (k − 1)F ]Gk−
3
2 e

∫ √
MGdx (4.6)

and so on for the higher ones. Unfortunately, an algebraic approach like the present one
cannot directly provide the normalization of wavefunctions and the issue needs to be
tackled differently [49].

We now consider two explicit cases corresponding to M and vf being constants, and
both of them being treated as local quantities.

4.1 M and vf are constants

Setting s = k > 0 and assuming3 without loss of generality M = 1, which implies from
(3.11) vf = 1 as well, we derive from (4.1), (4.2) and (4.3) the following solutions for the
pseudoscalar potential W (x),

W = b sech(x− c), (4.7)

W = be−(x−c), (4.8)

W = b cosech(x− c), (4.9)

3Taking M = 1 would give from (3.8) and (3.9) m(x) = A. We can fix A to be the constant mass m0

appearing in the Dirac Hamiltonian in (3.1).
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In each of the above cases k = 1
2 . These are hyperbolic forms different combinations of

which have been encountered in the literature before [64] while constructing reflectionless
pseudoscalar potentials for the Dirac equation.

4.2 M and vf are local entities

(a) Let us deal with the case (4.1) first. Assuming a plausible form

u(x)− c = tanh−1 x (4.10)

implies straightforwardly from (4.1) the results

F (x) = x, G(x) = b
√

1− x2, |x| < 1. (4.11)

Next, matching (4.4) with (4.8), the outcome is the following solution for M(x)

M(x) =
1

(1− x2)2
, |x| < 1, (4.12)

along with

vf (x) = 1− x2 (4.13)

from (3.11). Hence from (2.13) we get for Vs at s = k

Vs =

(
1

4
− k2 + b2

)
(1− x2)− 2kbx

√
1− x2, |x| < 1. (4.14)

When Eq. (4.12) is compared with (3.15), it yields the pseudoscalar potential

W = b
√

1− x2, |x| < 1 (4.15)

subject to the following restriction

k =
1

2
. (4.16)

As already noted, the potential algebra provides a common platform for the determination
of the associated eigenfunctions with the same eigenvalue. Corresponding to (4.11) and
(4.12), the wave functions can be read off from (4.5) and (4.6) namely,

χ0 ∼ eb sin−1(x) (4.17)

χ1 ∼
[
b
√

1− x2 +
1

2
x

]
(1− x2)−

1
2χ0 (4.18)

where |x| < 1 and so on. The wave functions are all well behaved within this finite range.
Figure 1 shows a sample graph of Vs enclosed within the interval (−1, 1) and assuming

positive values of b. For small values of the parameter b, the curve turns around after
crossing the x-axis showing two distinct portions, namely the upper and lower, on both
sides of it. However, for large b, the left portion dominates resembling an inverted oscillator
which reaches a maximum, then falls off, goes down the x-axis and subsequently curls over.

(b) Taking a typical form of u(x) = x, we run into a similar set of solutions as obtained
in the case discussed in section 4.1. More precisely we get a damping exponential form for
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the pseuodoscalar potential.

(c) To address the case (4.3), we take the choice

u(x)− c = coth−1 x. (4.19)

This furnishes the following forms

F (x) = x, G(x) = b
√
x2 − 1, |x| > 1. (4.20)

As a result the mass function turns out to be

M(x) =
1

(x2 − 1)2
, |x| > 1, (4.21)

from (4.4) and (4.15). This implies for the LFV

vf (x) = x2 − 1 (4.22)

using (3.11). From (2.13), we thus arrive at the following class of accompanying so(2, 1)
potentials at s = k > 0

Vs =

(
1

4
− k2 + b2

)
(x2 − 1) + 2kbx

√
x2 − 1. |x| > 1. (4.23)

A representative graph of Vs is plotted in Figure 2. Unlike the one of Figure 1, the interval
−1 < x < 1 on the x-axis is excluded because in this region Vs becomes imaginary.

As an implication, we obtain by solving (3.15) the accompanying pseudoscalar potential

W = b
√
x2 − 1, |x| > 1, (4.24)

subject to the constraint

k =
1

2
. (4.25)

For this case, the wave functions can be worked out to be

χ0 ∼ eb cosh−1(x), b < 0 (4.26)

χ1 ∼
[
b
√
x2 − 1 +

1

2
x

]
(x2 − 1)−

1
2χ0, b < 0 (4.27)

where |x| > 1 and so on, and we have to impose b to be negative to ensure their convergence
behaviour. See that χ0 is given in terms of inverse hyperbolic cosine whose range is the
interval [1,+∞). The asymptotic behaviour of the remaining wave functions is controlled
by χ0 apart from coefficients which tend to a constant value for |x| > 1.

A representative graph of Vs is plotted in Figure 2. Unlike the one of Figure 1, the
interval −1 < x < 1 on the x-axis is excluded because in this region Vs becomes imaginary.
For small values of negative b, Vs opens out in two distinct branches as will be clear from
the figure. For large values of negative b, Vs looks like the potential of a harmonic oscillator
with a flat horizental bottom.

From the foregoing analysis, we see that we encounter three types of analytical solutions
for the pseudoscalar potentials, in each case pointing to an inverse square rational functional
form of the mass function except when the guiding functions F (x) and G(x) are respectively
constant (implying the Fermi velocity to be constant as well) and of exponential types.
The mass function shows a singularity at x = ±1 which is avoided by defining it in the
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Figure 1: Plot of the potential Vs as given by (4.14).

Figure 2: Plot of the potential Vs as given by (4.23).

appropriate intervals. Note that M(x) is independent of the ambiguity parameters as
defined in (2.1) and symmetrical about x = ±1 . Evidently, it approaches the unity value
asymptotically with respect to x. The LFV is accordingly constrained to be a second-degree
polynomial. Concerning the solutions of the pseudoscalar potential, we point out that
for the two cases (4.1) and (4.3) our results are new and valid in the singularity-free
regions |x| < 1 and |x| > 1, respectively. In the literature, other forms of the pseudoscalar
potential have been studied [65] for the solutions of one-dimensional Dirac equation with

the pseudoscalar Hartmann potential [66]. The form is given by W (x) = −a
x + b e

−bx

x , where
a and b stand for the coupling strengths of the one-dimensional Coulomb and Yukawa
potentials, but notice that in such a model too the singularity at x = 0 is present. Our
aforementioned derivation provides a new set of additions in the list.

Finally, we remark on the possibility of deviation from the condition (3.11) when vf is
a constant but M(x) is a varying function of position. This specific scheme was analyzed
in detail in an earlier study [53] and reflect solutions corresponding to the mass-deformed
versions of Scarf II, Morse and generalized Pöschl-Teller potentials.

5 Concluding remarks

To conclude, we made a systematic study of (1+1)-dimensional position-dependent mass
Dirac equation in the framework of so(2,1) algebra by additionally taking into account
local variation of the Fermi velocity. We showed that the role of the latter is significant
to establish the consistency of the resulting structure of the eigenvalue problem after
disentanglement of the relevant coupled equations, and the extended Schrödinger equation
implied by the Casimir operator of the so(2, 1) algebra. The generated three classes of
solutions are shown to yield the corresponding new forms of pseudoscalar potentials.
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