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11 ABSTRACT
12 This work demonstrates the applicability of red mud-reduced graphene oxide (RM-rGO) 

13 nanocomposites, for the reliable and selective electrochemical detection of arsenic. The new 

14 nanocomposite material shows excellent anti-interference activity towards the arsenic ions (As3+) 

15 with the co-occurrence of other common cations (Cd2+, Cr2+, Zn2+, Pb2+, and Hg2+). Especially, the 

16 nanocomposite is exceptionally selective for As3+ in the presence of Cu2+ ions, which is stated to 

17 be the main interfering agent in the electrochemical detection of As3+. Under optimal experimental 

18 conditions, the new nanocomposite displays a high sensitivity (2.49 µA/ppb) as well as a very low 

19 detection limit (0.07 ppb) towards As3+ detection. This excellent electrochemical performance of 

20 the composite is accounted for the high adsorption proficiency of hematite (Fe2O3) phase rich nano 

21 red mud particles and enhanced electron transfer kinetics due to the presence of rGO.

22

23 KEYWORDS: Red mud, arsenic, hematite, electrochemical detection, sensitivity, electron 

24 transfer kinetics.

25

26 INTRODUCTION
27 Arsenic ion (As3+), a highly toxic substance, widely distributed in nature and one of the 

28 most abundant mineral in the earth's crust.12 According to the World Health Organization (WHO), 

29 the maximum acceptable level of As3+ in drinking water is 10 ppb and around 20 countries are 

30 suffering from serious As3+ contamination.3 The determination of trace level (sub ppb) of As3+ in 

31 natural water (ocean, sea, rivers), wastewater (from mining, metal processing, pesticides, organic 
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1 chemicals, etc.) and drinking water has become very important because these media are vulnerable 

2 to As3+ contamination.4 Among many developed methods for toxic metal ions detection,5,6 

3 electrochemical (EC) techniques especially, low-cost stripping voltammetry has gained 

4 considerable interest in terms of sensitivity, portability, rapid analysis time and suitable for on-site 

5 detection.7,8 The performance of such methods, however, depends heavily on the materials used 

6 for detection purposes.

7 Over the decades metal oxide nanoparticles (NPs) with their strong adsorption ability or 

8 electrocatalytic activity against toxic metal ions were explored to improve the EC sensor 

9 technology.9–12 However, owing to the electrode fouling and inferior electrical conductivity, most 

10 of the metal oxide NPs suffer from long-term stability and unfavorable electron transfer kinetics.13 

11 On the other hand, graphene and its associates (graphene oxide/reduced graphene oxide) have 

12 gained significant attention in the field of electrochemistry, due to their tunable electrical 

13 conductivity, high electron mobility, and large surface area.14–16 The combination of graphene with 

14 metal oxide NPs can, therefore, overcome the drawbacks present in the metal oxides and can 

15 provide a modern EC platform for the detection of toxic metal ions. Up to now Fe3O4, Fe2O3, 

16 MnO2, PbO based graphene nanocomposites(NCs) have been utilized with great success for As3+ 

17 detection.17–19 Among these metal oxides, environmental friendly Fe3O4/Fe2O3 NPs or nanosheets 

18 have shown a higher affinity towards As3+.7 But sophisticated synthesis protocols of such NCs 

19 lead to an increase in the material production cost. Therefore, a facile approach to prepare low-

20 cost NCs, consist of graphene and many metal oxide phases could be of great significance in the 

21 field of EC sensor.

22 Red mud (RM) is an aluminum industry waste, composed of fine particles containing Fe2O3 

23 (30-60%) constitutes; in addition, other metal oxides like Al2O3, SiO2, TiO2 are also present.20 It 

24 possesses large surface areas and available at large scale at practically no cost. However, it is 

25 highly alkaline in nature and now is a threat to the ecosystem due to the high volume of RM 

26 production, processing, and maintenance. RM is well known to have high adsorption capacity 

27 towards toxic metal ions and it has been used for the removal of these environmental carcinogens 

28 for decades.21 Interestingly, the applicability of red mud as an EC sensor towards toxic metal ion 

29 detection has not been explored yet.
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1 Thus motivated by the need for a cost-effective, robust, environmental friendly sensor for 

2 As3+ detection in water and to utilize the excellent adsorption capabilities of RM, herein we report 

3 the applicability of RM-reduced graphene oxide (RM-rGO) NCs for As3+ detection using square 

4 wave anodic stripping voltammetry (SWASV) technique. The evaluation of EC studies of the new 

5 NCs exhibit excellent limit of detection (LOD), sensitivity and anti-interference activity towards 

6 As3+ ions.  

7 EXPERIMENTAL SECTION
8 RM was collected from   National   Aluminum   Company   Limited (NALCO), India. All 

9 chemicals including, graphite flakes (>99% Alfa Aesar), sulphuric acid (98%, Fisher Scientific) 

10 and hydrochloric acid (37%, Fisher Scientific), potassium permanganate (>99%, Sigma Aldrich), 

11 sodium hydroxide (98%, Fisher Scientific), L-ascorbic acid (99%, Sigma Aldrich), potassium 

12 ferrocyanide (K4[Fe(CN)6]),  potassium ferricyanide (K3[Fe(CN)6]), potassium chloride (KCl) 

13 (Fisher Scientific) were used as received without any further purification. A stock solution (1 g/L) 

14 of As3+ was prepared by dissolving the required quantity of As2O3 in NaOH solution, and 

15 subsequently, the pH of the solution was adjusted to 3 with concentrated HCl. For interference 

16 study, the standard solutions of  Cd2+, Cr2+, Zn2+, Cu2+, Pb2+, Hg2+ ions (1000 ppm each) were 

17 purchased from Sigma Aldrich and were diluted to make a solution of the desired concentration.

18 First, rGO was synthesized using sonication assisted oxidation of graphite in an acidic 

19 environment as reported by Sina Abdolhosseinzadeh et al.22 In order to prepare the nano RM-rGO 

20 composite, mechanical milling process using a planetary ball mill (Retsch, PM200) was employed. 

21 The powders (mass ratio of RM to rGO is 10:1) were placed in a chrome steel bowl (volume 60 

22 mL) filled with steel balls of diameter 5 mm with balls-to-powder mass ratio was 10:1. The ball 

23 milling was carried out at 150 revolutions per minute (rpm) and was continued up to 12 hr. with 

24 intermediate intervals of 2 hr. The prepared samples are designated as RM-rGOZ NCs where Z is 

25 the milling hour.

26 X-ray diffraction (XRD) experiments were performed using Bruker, D8-discover with Cu-Kα 

27 energy (λ = 0.154 nm). The Raman spectra were recorded using a Renishaw Raman spectrometer 

28 (inVia) using a 532 nm Laser source, using a nominal power of 25 mW for 60 s, 50× magnification. 

29 Fourier transform infrared spectroscopy was performed using Thermo Scientific Nicolet™iS™5 

30 FTIR with a diamond ATR accessory. Scanning electron microscopy was carried out using a 

31 Hitachi SU5000, with an acceleration voltage of 10 kV and working distance ⁓ 6 mm. All EC 
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1 measurements were done using the Autolab potentiostat/galvanostat 302N instrument (Metrohm 

2 Autolab B.V. Utrecht, Netherlands) controlled by NOVA software.

3

4  RESULTS AND DISCUSSION
5
6 Morphology of the RM, rGO and RM-rGOz NCs can be visualized in SEM images (Figure 

7 1). In case of rGO, an aggregated and crumpled paper-like structure is observed in Figure 1a, which 

8 is a common characteristic of oxidation/reduction processed rGO.22 Whereas, RM particles (Figure 

9 1b) are expressing their characteristics feature of irregular size and shape with particle sizes are 

10 ranging from 3 to 5 µm. while their agglomerates are distributed within tens of micrometer range. 

11 Figure 1(c-e) shows clear changes in the morphology in the RM-rGO NCs caused by ball milling. 

12 During the first four hours of ball milling cold welding and cracking mechanism together 

13 participate in the formation of spherical size particles.23 Increasing milling time increases structural 

14 disorder, decreases particle size and peel off graphene layers. After 8 hours of milling period, 

15 considerable refinement and reduction in particle size is evident. With further increasing the 

16 milling time, the particles are being fragmented into more tiny particles and particles tend to 

17 agglomerate again. This simple and facile strategy to prepare NPs from particles of micron size 

18 has a direct impact on their EC performances, which is discussed next.
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1

2 Figure 1 SEM images of (a) rGO (b) RM (c) RM-rGO4 (d) RM-rGO8 and (e) RM-rGO12.
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6

1 In order to investigate the charge transfer kinetics of the prepared NCs, cyclic voltammetry 

2 (CV) measurements were performed using an EC redox couple ([Fe(CN)6]3-/4- in 0.1M KCl), which 

3 is displayed in Figure 2a. It is well known that both the degree of reversibility and the charge 

4 transfer kinetics, can be improved by eliminating oxygen-containing groups or by increasing the 

5 fraction of sp2 bonded carbons in carbon-based NCs.24 In our case, the smallest ΔEp ⁓ 0.15 V 

6 (anodic and cathodic peak potential separation) and the highest peak current is observed for 

7 RM/rGO8 NCs. Further, the ratio of anodic to cathodic peak current (ipa/ipc) is calculated as 1.08 

8 for RM/rGO8, indicating a reversible electron transfer process of the Fe2+/Fe3+ species. The CV 

9 output of RM/rGO12 is also comparable to that of RM/rGO8. From the scan rate dependency CV 

10 curves of RM/rGO8 (inset of Figure 2a), it can be visualized that redox peak currents (ipa and ipc) 

11 are increases linearly with the square root of scan rate (insets of Figure 2a), implies diffusion-

12 controlled redox kinetics of the Fe2+/Fe3+ species. The CV performance of RM-rGO2, RM-rGO6, 

13 and RM-rGO10 is also represented in Figure S1. The CV output of RM-rGO6 and RM-rGO10 are 

14 approximately equal to that of RM-rGO4 and RM-rGO12 respectively whereas, the lowest peak 

15 current is observed for RM-rGO2. 

16 Figure 2b represents the SWASV analytical characteristics of GCE, RM and all RM-rGO 

17 NCs where electrodeposition is carried out for 200 s at -0.4 V. Nearly no oxidation peak is 

18 observed for the bare GCE electrode. For RM particles there is only a weak peak can be seen. This 

19 is probably due to the inferior electrical conductivity of the RM. However, the RM-rGO NCs 

20 provide a much greater and sharper peak current response towards the As3+ ions. Figure 2b clearly 

21 shows that RM-rGO8 outperforms the other electrodes in terms of stripping peak current response 

22 corresponds to the oxidation of As0. RM-rGO8 is, therefore, best suited for As3+ detection which 

23 results in better sensitivity.
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7

1 Figure 2 (a) CV response of (i) GCE (ii) RM (iii) RM-rGO4 (iv) RM-rGO8 and (v) RM-rGO12 with insets showing 

2 the CV response of RM-rGO8 with scan rate 20, 40, 60, 80 and 100 mVs-1 and the variation of the anodic and cathodic 

3 peak current of RM-rGO8 as a function of scan rate. (b) SWASV response of (i) GCE (ii) RM (iii) RM-rGO4 (iv) RM-

4 rGO8 and (v) RM-rGO12 for the detection of 10 ppb As3+ ions. The SWASV experimental parameters are as follows: 

5 deposition time 200 s, deposition potential -0.4 V, amplitude 25 mV, step potential 4 mV and frequency 25 Hz.

6

7 Next, experimental parameters (deposition potential and time) of SWASV experiment are 

8 optimized (Figure S2) to achieve the maximum sensing efficiency using RM-rGO8 NCs. Finally, 

9 the detection of As3+ is accomplished under the optimized experimental conditions (deposition 

10 potential of -0.4 V and deposition time 200 s). Figure 3a represents the SWASV response for As3+ 

11 at various concentrations. The electrooxidation current was linear within the concentration range 

12 of 0.5 to 3.7 ppb (inset of Figure 3a) and the fitted linear relationship between the stripping peak 

13 current (corresponds to the oxidation of As0 - As3+) and concentration of As3+ is described by the 

14 following equation i/µA = -0.59 + 2.49c/ppb. The limit of detection (LOD) and sensitivity value 

15 was found to be 0.07 ppb and 2.49 µA ppb-1 respectively. Where LOD is defined as the, lowest 

16 quantity of analyte that provides a signal which is significantly different from the blank value with 

17 a stated confidence level of 90% and the LOD value is calculated according to the literature 

18 reported.25 The obtained LOD value is well below the WHO toxicity mark (10 ppb).3 A 

19 comparative study of the performance of the RM-rGO8/GCE electrode with other sensing 

20 platforms developed for EC detection of As3+ is summarized in Table 1.

21 To validate the selectivity of the RM-rGO8/GCE electrode with the co-occurrence of As3+ 

22 and Cu2+ ions, SWASV measurements were carried out again in a mixture of both the ions where 

23 the concentration of Cu2+ was kept higher than 8 ppb. Figure 3b represents the SWASV plots of 

24 simultaneous detection of As3+ and Cu2+. An isolated anodic peak corresponding to the oxidation 

25 of Cu0 – Cu2+ is observed at around 0.3 V which is far away (~ 400 mV) from the anodic peak 

26 potential of As0. Here the concentration of As3+ and Cu2+ is increased simultaneously and the 

27 obtained sensitivity of As3+ is marginally improved compared to that observed in the absence of 

28 Cu2+. The enhanced sensitivity of As3+ can be explained on the basis of interference between As3+ 

29 and Cu2+ ions. The stripping peak potentials of both the ions are far from each other (400 mV) and 

30 the formation of an intermetallic compound is most unlikely, but small peaks in between As3+ and 

31 Cu2+ are visible which may be due to the formation of As-Cu intermetallic compound during the 

32 simultaneous existence arsenic and copper. Such kinds of observations are well documented and 
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8

1 have been published before.26 The influence of other metal ions on the stripping current response 

2 of As3+ has been further demonstrated by doing interference experiments. 

3

4

5 Figure 3 (a) SWASV response of RM-rGO8 towards the detection of As3+ ions over a concentration range of 0.5 to 

6 3.7 ppb. The inset of Figure (a) displays the linear calibration plot of the peak current as a function of As3+ ions 

7 concentration. (b) SWASV response of RM-rGO8 for the simultaneous detection of As3+ (0.1 to 18 ppb) and Cu2+ (8 

8 to 80 ppb) with insets show the linear calibration plots corresponding to the As3+ and Cu2+ ions concentration.

9 Table 1. Comparison of our proposed electrode material with other sensing platforms.

Electrode material Sensitivity 
(µA/ppb)

LOD 
(ppb)

Ref.

CoOx/GCE 0.00148 0.825 27

Fe3O4 room temperature ionic liquid composite 4.91 0.0008 10

Ru nanoparticle/GCE 0.00238 0.1 28

Gold nanoparticles 2.69 0.06 29

Au-Pd bimetallic nanoparticle 3.9 0.024 30

FePt bimetallic nanoparticle 0.42 0.8 31

MnOx/Au nanoparticle composite 0.193 0.057 9

MnFe2O4 nanocrystal/gold electrode 0.295 1.95 32

rGO/MnO2 nanohybrid 0.175 0.05 18

rGO/Fe3O4 nanocomposites 0.281 0.12 19

Dumbbell like Au/Fe3O4 nanoparticles 9.43 0.02 33

Graphene/PbO composite - 0.74 17

RM-rGO composite 2.49 0.07 Present 
work

10 Analysis of As3+ in the presence of other interfering agent is still difficult, as coexisting 

11 substances are co-deposited and stripped with As3+. Therefore selective detection of As3+ in the 

12 presence of other metal ions is also important. In order to investigate the anti-interference ability 
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9

1 of the RM-rGO8/GCE electrode, SWASV measurements are recorded in 10 ppb As3+ solution in 

2 the presence of a 10 fold higher concentration of other metal ions namely Cd2+, Cr2+, Zn2+, Cu2+, 

3 Pb2+, and Hg2+. Figure 4 illustrates the anodic stripping current of the As3+ in the absence and 

4 presence of the above mentioned interfering metal ions. No significant interference is observed of 

5 these ions on the As3+ stripping current response. The optimized deposition potential (-0.4 V) 

6 eliminates the possible interference from common metal cations.19 In addition, rapid mass 

7 transportation in the electrode surface with a small diffusion layer and high current density could 

8 also be responsible for such good anti-interference activity. This interference study laid the 

9 foundation for reliable and selective As3+ detection in water.

10

11

12 Figure 4 Effect of interfering ions Cd2+, Cr2+, Zn2+, Cu2+, Pb2+, and Hg2+ on the stripping current response of 10 ppb 

13 As3+.

14 To demonstrate the compatibility of RM-rGO8 NCs with the Au electrode, similar SWASV 

15 tests are conducted on the RM-rGO8 modified Au electrode (RM-rGO8/Au) having a physical size 

16 (diameter = 2 mm) equal to GCE. Figure S3 (supporting information) displays the typical SWASV 

17 curves for the As3+ (0.1 to 2.1 ppb) detection with inset represents the linear calibration plot. 

18 Interestingly, the anodic peak corresponds to the oxidation of As0 - As3+ occurs around (0.2 V) 

19 which is more positive as compared to the RM-rGO8 modified GCE electrode. The obtained 

20 sensitivity and LOD are found to be 4.35 µA ppb-1 and 0.08 ppb respectively. Though the RM-

21 rGO8/Au electrode affords better sensitivity compared to RM-rGO8/GCE, it is still prone to 

Page 9 of 20

ACS Paragon Plus Environment

ACS Applied Nano Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

1 interference from other metal ions, in particular from Cu2+ ions, which has a redox potential 

2 (around 0.338 V) very near to the oxidation potential of As0.

3 Metal oxide nanomaterials are prone to instability under acidic media, hence taking the 

4 practical applications into account the reproducibility and stability test of the RM-rGO8 NCs is 

5 carried out in acidic conditions. A series of 6-time repetitive measurements of SWASV response 

6 for 2 ppb of As3+ is recorded and the results are displayed in Figure S4. The stripping current 

7 response of the RM-rGO8 electrode is highly reproducible with a relative standard deviation of  

8 3.57%. The nanocomposite's stability is also investigated and the SWASV current response 

9 corresponds to the arsenic oxidation remaining ⁓90 % of its initial response after 15 days. 

10 Therefore, the good electrode stability and reproducibility for repetitive measurements of As3+ ions 

11 indicate that the nanocomposite possesses great potential for monitoring As3+ ions in real samples.

12 In order to examine the practical application of the present NC (RM-rGO8), the SWASV 

13 experiment has been performed on the real water sample. The sample was collected from the 

14 groundwater near Asansol city, West Bengal, India. Prior to the SWASV experiment, the sample 

15 was treated with a filter to remove any insoluble contaminants. The water sample was then diluted 

16 with concentrated HCl to adjust its pH value to 3 and no further sample treatment was done. The 

17 standard addition of As3+ is performed to calculate the concentration of As3+ in the real sample. 

18 The SWASV response and the corresponding calibration plots are shown in Figure S5 and the As3+ 

19 concentration in the real sample is calculated as 2.24 ppb. To determine the validity of the 

20 electrochemical method we discussed, recovery experiments are also performed with the real 

21 sample in which a known amount of As3+ is added. The obtained recovery is varied between 90% 

22 to 110% which indicates the RM-rGO8 nanocomposite has a great practical application.

23 There are many factors that can influence the EC behavior of RM-rGO NCs, such as surface 

24 morphology, the active surface area for EC reaction, the fraction of sp2 bonded carbons come in 

25 contact with the electrolyte, etc. The optimization of milling time is another aspect that requires 

26 further analysis in terms of identifying the morphological, chemical and physical changes. In 

27 addition, the shift in the peak current (anodic/ipa and cathodic/ipc) response and peak potential 

28 difference (ΔEp) in the CV i-E curve may be correlated to the surface oxygen functionalities and 

29 the exposed edge planes of sp2 bonded carbons. In order to identify the factors responsible for the 

30 strong EC sensing results, XRD, Raman and FTIR spectroscopic tools are employed.

Page 10 of 20

ACS Paragon Plus Environment

ACS Applied Nano Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

1 To determine the different phases present in the as obtained RM and synthesized RM-rGO 

2 NCs, XRD measurements were carried out and are represented in Figure 5a. In case of rGO, a 

3 broad diffraction peak around 2θ ~ 25o and a small peak at 2θ ~ 43o can be seen (Figure 5a(i)) 

4 which signifies the formation of rGO with less oxygen functionalities.34 Whereas, in RM and all 

5 RM-rGO NCs, a mixture of many metal oxide phases such as hematite, goethite, calcite, and silica 

6 can be observed. However, hematite (θ~ 12.06o, 16.57 o, 17.80o) is the main dominant phase in 

7 RM which is expected due to the red color of the RM and it constitutes around 55% of the RM.35 

8 The reduction in particle size via ball milling can also be correlated with the XRD peak broadening 

9 with milling hour. Notably, in all RM-rGO NCs, the broad diffraction peak of rGO can be 

10 observed, indicating that rGO sheets are attached to the RM particles. 

11 Raman measurements were also carried out to examine the phase purity and different 

12 vibrational modes present in the NCs. A series of band related to the different modes of vibration 

13 of metal oxides, e.g; Eg (~ 291 and 404 cm−1) and A1g (~223 and 502 cm−1 ) mode of hematite 

14 (Fe2O3) phase; Eg
5 (~146 cm−1) and AG

1 (~662 cm−1) mode of ilmenite (FeTiO3) phase; Eg (~152 

15 cm−1) mode corresponds to the calcite (CaCO3) phase can be seen in the Raman spectrum of RM 

16 (Figure 5b(i)).35 Raman spectrum of rGO and RM-rGO NCs display a typical characteristic peak 

17 of D and G band around 1345 and 1595 cm−1, where D peak corresponds to the rGO sheet defects 

18 and G peak is related to E2g phonon modes of the sp2 bonded carbon. The relative intensity ratio 

19 of these two bands (ID/IG) is a simple way to quantify the degree of disorder present in the graphene 

20 sheet. In case of rGO, the ratio of the ID/IG is 1.00 and the value is increased to 1.13 for the RM-

21 rGO8 sample, which implies that the physical force during the milling process introduces defects 

22 and disorder to the graphene cluster. Further milling up to 12 hr. did not change much the value of 

23 ID/IG that indicates, rGO sheets are attached well to the RM particles which help graphene sheets 

24 to damage further.

25 Furthermore, FTIR spectroscopy examines the deoxidation of rGO and the presence of 

26 chemical bonds or attached functional groups in RM and RM-rGO NCs. In the case of rGO (Figure 

27 5c(i)), the peak at 1560 cm-1 and a weak signal around 1685 cm-1 is referred to as the C=C and 

28 C=O stretching vibration respectively. However, other oxygen-containing functionalities such as 

29 epoxy or alkoxy groups (C-O) are completely absent in rGO which are the common features of 

30 graphene oxides FTIR spectra.36 This observation confirms that most of the oxygen-containing 

31 functional groups are removed from the graphene sheet during the reduction process. On the other 
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1 hand, RM shows a strong absorption band around 595 cm-1 and a weak peak near 1645 cm-1 due 

2 to the stretching vibration of Fe-O bonds of the hematite phase.37 In addition, the presence of 

3 goethite (~803 cm-1), characteristics bands correspond to the Si-O vibrations (~990 cm-1), presence 

4 of CO3
2- (~1420, 866 cm-1) groups are also detected. The positions and absorption bands of RM-

5 rGO NCs (Figure 5c(iii-v)) are nearly similar to that of RM. The rGO sheets are likely anchored 

6 to the nano RM particles through carboxylate bonds (Fe-C-O) and the existence of which is 

7 confirmed in the FTIR spectra (band around 1580 cm-1) of RM-rGO NCs.38 The existence of some 

8 additional bands in the hydroxyl stretching region (~ 3300-3500 cm-1) can also be seen in RM-

9 rGO NCs. These attached hydroxyl functional groups in the RM-rGO NCs are advantageous for 

10 adsorbing toxic metal ions.13

11
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1 Figure 5 (a) XRD pattern (b) Raman spectra and (c) FTIR spectra of (i) rGO (ii) RM (iii) RM-rGO4 (iv) RM-rGO8 

2 and (v) RM-rGO12.

3

4 Thus, the key feature for the excellent EC performance is related to the high adsorption 

5 capability of the hematite phase rich RM. The formation of nano RM via mechanical milling 

6 increases the active surface area to adsorb As3+ ions while the presence of sp2 bonded carbons in 

7 the rGO sheets is responsible for enhanced electron transport kinetics. The superior EC behavior 

8 of RM/rGO8 and RM/rGO12 can be attributed to the large active surface area of these NCs where 

9 RM particles are properly surrounded by the rGO sheets and larger fraction of sp2 carbon comes 

10 in contact with electrolyte during EC measurements. In addition, the attached functional groups 

11 (hydroxyl and carboxylic) to the NC surface not only serve as active sites for electrodeposition of 

12 As3+ ions but also act as a bridge for rapid electron transfer from solution to electrode surface. 

13 Therefore, the NCs prepared at longer milling hour (>4) with exposed sp2 carbon and less oxygen 

14 functionalities facilitates the electron transfer kinetics. The combined effect of RM and electrically 

15 conductive rGO allows more effective electrodeposition of As3+ ions on the NCs surface, which 

16 in turn improves the EC sensing performances. 

17

18 CONCLUSIONS
19
20 In a time of high demand of low-cost potential nanomaterial for environmental carcinogenic 

21 detection, this work successfully demonstrates the applicability of mechanically milled RM-rGO 

22 NCs as a working electrode material for sensitive and efficient electroanalysis of toxic As3+ ions. 

23 The electrode (RM-rGO8) can accurately detect As3+ in the presence of other interfering metal ions 

24 namely Cd2+, Cr2+, Zn2+, Cu2+, Pb2+, and Hg2+. Mechanical ball milling offers a uniform 

25 morphology and enhanced charge transfer kinetics from the low-cost industrial waste RM. 

26 However, the optimization of ball milling time is considered to be the key factor to achieve the 

27 desirable EC sensing platform. The improvement in the EC performance of RM-rGO NCs with 

28 milling time can be attributed to the formation of functionalized RM-rGO NPs which not only 

29 provide the large no of active sites for As3+ adsorption but also accelerate the electron transport 

30 kinetics.

31

32
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1 ASSOCIATED CONTENT

2 Supporting Information

3 CV response of RM-rGO2, RM-rGO4, RM-rGO6, RM-rGO8, RM-rGO10, and RM-rGO12 with inset 

4 showing the magnified curve of the region A (Figure S1).  Experimental parameters optimization 

5 (a) deposition potential and (b) deposition time. Other experimental conditions are as follows; 

6 amplitude 25 mV, step potential 4 mV and frequency 25 Hz (Figure S2). SWASV response of the 

7 RM-rGO8/Au electrode towards the detection of As3+ ions over a concentration range from 0.1 to 

8 2.3 ppb. The inset displays the linear calibration plot of the peak current as a function of As3+ ions 

9 concentration (Figure S3). The reproducibility of 6 times repetitive SWASV measurements of 2 

10 ppb As3+ ions using RM-rGO8 nanocomposite modified GCE (Figure S4).  SWASV response of 

11 real water sample with successive addition of As3+ ions. The inset showing the corresponding 

12 linear calibration plot of stripping peak current against As3+ concentration (Figure S5).
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