RADIATIVE DECAYS AND SU(3) FLAVOUR STRUCTURE OF IOTA (1460)

B. BAGCHI ${ }^{1}$
Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Received 13 November 1985

Recently, Chanowitz has derived two constraints which become powerful if the experimental limits on $\Gamma(\iota \rightarrow \gamma \gamma) /$ $B(\iota \rightarrow \bar{\kappa} \kappa \pi)^{2}$ and $\Gamma(\imath \rightarrow \varphi \gamma) \cdot B(\iota \rightarrow \bar{\kappa} \kappa \pi)$ are improved. It is pointed out that given the present limit on $\Gamma(\psi \rightarrow \iota \gamma)$, such a possibility appears unlikely.

In a paper with an identical title, Chanowitz [1] has argued that relationships between the radiative decay widths of the $\iota(1460)$ based on vector meson dominance (VMD) and SU(3) flavour symmetry may help decide whether the reported $\rho \gamma$ enhancement in $\psi \rightarrow \gamma \rho \gamma$ is due to iota or not. To this end, he has derived two constraints which become particularly powerful if the experimental limits $[2,3]$ on $\Gamma(\imath \gamma \gamma \gamma) /$ $B(\iota \rightarrow \bar{\kappa} \kappa \pi)^{2}$ and $\Gamma(\iota \rightarrow \varphi \gamma) \cdot B(\iota \rightarrow \bar{\kappa} \kappa \pi)$ are fine-tuned by factors of 2 and 6 , respectively. The purpose of this letter is to show that given the present lower limit on the $\psi \rightarrow \iota \gamma$ rate, such a possibility appears highly unlikely. We first review briefly Chanowitz's work.

The iota wave function is taken as
$\iota=\cos \theta_{\iota} \iota_{1}+\sin \theta_{\iota} \iota_{8}$,
along with the prescription ${ }^{ \pm 1}$
$A\left(\iota_{a} \rightarrow \gamma \gamma\right)=\sum_{\mathrm{V}} \frac{e}{f_{\mathrm{V}}} A\left(\iota_{a} \rightarrow \mathrm{~V} \gamma\right)(a=1$ or $8, \mathrm{~V}=\rho, \omega, \varphi)$.
${ }^{1}$ On leave from the DSA(UGC) scheme, Division of Theoretical Physics and Applied Mathematics, Department of Mathematics, Jadavpur University, Calcutta 700 032, India.
$\neq 1$ The followed convention is followed:

Since the vector meson-photonic couplings are related as $e \mid f_{\rho}: e / f_{\omega}: e l f_{\varphi}=1: 1 / 3:-\sqrt{2} / 3$, the following ratio is obtained:
$A(\iota \rightarrow \gamma \gamma) / A(\iota \rightarrow \rho \gamma)=\frac{4}{3}\left(e / f_{\rho \pi \pi}\right) G(x)$,
where $G(x)$ stands for the quantity
$G(x)=(1+0.5 x) /(1+x)$,
$x=\tan \theta_{\imath} A\left(\iota_{8} \rightarrow \rho \gamma\right) / A\left(\iota_{1} \rightarrow \rho \gamma\right)$,
and possible off-shell corrections in going from $q^{2}=$ m_{V}^{2} to $q^{2}=0$ have been partially accounted ${ }^{\ddagger 2}$ for by writing $f_{\rho \pi \pi}$ in place of f_{ρ}. Note that $f_{\rho \pi \pi}$ is given by $f_{\rho \pi}^{2} / 4 \pi=3 m_{\rho}^{2} \Gamma_{\rho} / 2 \mid \bar{k}_{\rho \pi \pi^{\prime}}{ }^{3}=2.97 \pm 0.10$.

To calculate the rate for $\iota \rightarrow \pi \pi \gamma$, it has been assumed that this process is induced by $\rho \gamma$ and an evaluation of the three-body phase space yields

$$
\begin{align*}
& \Gamma(\imath \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) \\
& \quad=(0.80)\left[\left(m_{\imath}^{2}-m_{\rho}^{2}\right)^{3} / 32 \pi m_{\imath}^{3}\right]|A(\iota \rightarrow \rho \gamma)|^{2} . \tag{5}
\end{align*}
$$

Combining (3) and (5) and using the $\mathrm{SU}(3)$ relations among $A\left(l_{a} \rightarrow \mathrm{~V} \gamma\right)$ the following results are obtained ${ }^{\neq 1}$

$$
\begin{align*}
& \Gamma\left(\mathrm{V} \rightarrow \mathrm{e}^{+} \mathrm{e}\right]=\frac{1}{3} \alpha^{2} m_{\mathrm{V}}\left(f_{\mathrm{V}}^{2} / 4 \pi\right)^{-1} \tag{6a}\\
& \Gamma\left(\iota \rightarrow \mathrm{~V}_{\gamma}\right)=\left[\left(m_{\iota}^{2}-m_{\mathrm{V}}^{2}\right)^{3} / 32 \bar{\kappa} m_{\iota}^{3}\right]\left|A\left(\iota \rightarrow \mathrm{~V}_{\gamma}\right)\right|^{2} \tag{6b}\\
& \Gamma(\mathrm{~V} \rightarrow \iota \gamma)=\left[\left(m_{\mathrm{V}}^{2}-m_{\imath}^{2}\right)^{3} / 96 \pi m_{\mathrm{V}}^{3}\right]|A(\mathrm{~V} \rightarrow \iota \gamma)|^{2}
\end{align*}
$$

Experimentally, $f_{\rho}^{2} / 4 \pi=1.93 \pm 0.10, f_{\omega}^{2} / 4 \pi=21.0 \pm 1.4$, $f_{\varphi}^{2} / 4 \pi=13.8 \pm 0.6$ and $f_{\psi}^{2} / 4 \pi=11.8 \pm 1.6$.

$$
\begin{align*}
& \Gamma(\iota \rightarrow \gamma \gamma) / \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) \\
& \quad=0.625\left(1-m_{\rho}^{2} / m_{\imath}^{2}\right)^{-3}\left(1.34 e / f_{\rho \pi \pi}\right)^{2} G^{2}(x), \\
& \Gamma(\iota \rightarrow \omega \gamma)=0.085 \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma), \\
& \Gamma(\iota \rightarrow \varphi \gamma)=0.063 H^{2}(x) \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma), \tag{6c}\\
& \neq 2 \text { See ref. [1] for a discussion on this point. }
\end{align*}
$$

where $H(x)$ is another function of x given by
$H(x)=(1-2 x) /(1+x)$.
It may be noted that the current experimental limits [2] on $\Gamma(\iota \rightarrow \gamma \gamma) \cdot B(\mathrm{i} \rightarrow \bar{\kappa} \kappa \pi), \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) /$ $B(\iota \rightarrow \bar{\kappa} \kappa \pi)$ and $\Gamma(\iota \rightarrow \varphi \gamma) / \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma)$ give ${ }^{\ddagger 3}$ the following bounds for $G(x)$ and $H(x)$
$|G(x)|<0.74 \pm 0.14, \quad|H(x)|<5.1 \pm 0.6$,
leading to
$x \geqslant 1.1$ or $x \leqslant-2.0$,
Chanowitz now makes the following interesting observation: If the experimental limits on the above ratios are improved so that $|G(x)|$ and $|H(x)|$ are less than their asymptotic values (viz. 0.5 and 2 , respectively) then $|G(x)|<1 / 2$ would imply $x<-1.5$ and $|H(x)|<2$ would imply $x>-0.25$ which are mutually incompatible conditions. One would then be led to conclude that the $\rho \gamma$ enhancement cannot be realised due to the iota only.

Although the analysis so far appears to be perfect, one gets into difficulty if one tries to seek consistency with the $\psi \rightarrow i \gamma$ rate. For, one can extend (2) to include the $\psi(3097)$ state and then assuming $\psi(3097)$ to be a c̄ state, one can obtain

$$
\begin{align*}
& A\left(\iota_{8} \rightarrow \rho \gamma\right): A\left(\iota_{8} \rightarrow \omega \gamma\right): A\left(\iota_{8} \rightarrow \varphi \gamma\right): A\left(\iota_{8} \rightarrow \psi \gamma\right) \\
& \quad=1: \frac{1}{3}: \frac{2}{3} \sqrt{2}: 0, \tag{9a}\\
& A\left(\iota_{3} \rightarrow \rho \gamma\right): A\left(\iota_{1} \rightarrow \omega \gamma\right): A\left(\iota_{1} \rightarrow \varphi \gamma\right): A\left(\iota_{1} \rightarrow \psi \gamma\right) \\
& \quad=1: \frac{1}{3}:-\frac{1}{3} \sqrt{2}: \frac{2}{3} \sqrt{2}, \tag{9b}\\
& e\left|f_{\rho}: e\right| f_{\omega}: e l f_{\varphi}: e \mid f_{\psi}=1: \frac{1}{3}:-\frac{1}{3} \sqrt{2}: \frac{2}{3} \sqrt{2} . \tag{9c}
\end{align*}
$$

The ratio of $A(\psi \rightarrow \iota \gamma)$ and $A(\imath \rightarrow \gamma)$ would then be given by
$A(\psi \rightarrow \iota \gamma) / A(\iota \rightarrow \rho \gamma)=\frac{2}{3} \sqrt{2} f(x)$,
where $f(x)$ stands for
$f(x)=1 /(1+x)$.
${ }^{\neq 3}$ The current experimental status is

$$
\begin{aligned}
& \Gamma(\imath \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) / B(\imath \rightarrow \bar{\kappa} \kappa \pi)=2.0 \pm 0.75 \mathrm{MeV}, \\
& \Gamma(\imath \rightarrow \gamma \gamma) \cdot B(\imath \rightarrow \bar{\kappa} \kappa \pi)<2 \mathrm{keV}, \\
& \Gamma(\imath \rightarrow \varphi \gamma) / \Gamma(\imath \rightarrow \rho \gamma \rightarrow \pi \pi \gamma)<1.6 \pm 0.4, \\
& B(\imath \rightarrow \bar{\kappa} \kappa \pi)>\frac{1}{2} .
\end{aligned}
$$

Thus one would find

$$
\begin{align*}
& \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) \\
& \quad=\frac{27}{10}\left[m_{\psi}\left(m_{\iota}^{2}-m_{\rho}^{2}\right) / m_{\iota}\left(m_{\psi}^{2}-m_{\imath}^{2}\right)\right]^{3} f^{2}(x) \Gamma(\psi \rightarrow \iota \gamma), \tag{12a}
\end{align*}
$$

or
$\Gamma(\psi \rightarrow \iota \gamma)=4.4 f^{2}(x) \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma)$.
In other words
$\Gamma(\psi \rightarrow \iota \gamma)>4.41 f^{2}(x) \mathrm{MeV}$
if one uses the present experimental upper limit on $\Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma)$. On the other hand, recent results (see ref. [3]) on radiative decays of ψ obtained by the Mark III and the Crystal Ball groups suggest the following lower limit on the branching fraction of $\psi \rightarrow$ $\gamma(1460)$:
$B(\psi \rightarrow \gamma(1460))>(6.9 \pm 0.4 \pm 1.0) \times 10^{-3}$.
In order that (13a) and (13b) are mutually consistent, $|x|$ must be of $\mathrm{O}\left(10^{2}\right)$ so that $G(x)$ and $H(x)$ are very close to their asymptotic values. Note that this value of $|x|$ is not inconsistent with the present limits on $|G(x)|$ and $|H(x)|$ (see eq. (8)). Since $|x|$ is very large, the coefficients in the numerator and denominator prevail. Therefore, if consistency with the $\Gamma(\psi \rightarrow \iota \gamma)$ is to be maintained, it is highly unlikely that $G(x)$ or $H(x)$ would have values appreciably smaller than $1 / 2$ or -2 , respectively. For instance, if $G(x)=-0.4$ then $x=-1.7(>-100)$. This means that for a 20% deviation from $|G(x)|=0.5, x$ has to shrink by at least a couple of orders of magnitude.

One can conceive of a possibility [4] that ι has a significant gluon component
$\iota=a \iota_{8}+b \iota_{1}+c \iota_{9}, \quad a^{2}+b^{2}+c^{2}=1$.
However, this does not improve the situation much. For, using (14), one can obtain the following relations

$$
\begin{align*}
& A(\psi \rightarrow \iota \gamma) / A(\iota \rightarrow \rho \gamma)=\left[\frac{2}{3} \sqrt{2}+M\left(\psi, \iota_{9}\right)\right] /(1+x),(15 \mathrm{a}) \\
& A(\iota \rightarrow \gamma \gamma) / A(\iota \rightarrow \rho \gamma)=\frac{4}{3}\left(e / f_{\rho}\right) \tag{15b}\\
& \quad \times\left[1+0.5 x+\frac{2}{3} \lambda \psi+(1 / \sqrt{2}) \lambda \psi M\left(\psi, \iota_{9}\right)\right] /(1+x),
\end{align*}
$$

where x and $M\left(\psi, \iota_{9}\right)$ are defined as
$x=(a / b) A\left(\iota_{8} \rightarrow \rho \gamma\right) / A\left(\iota_{1} \rightarrow \rho \gamma\right)$,
$M\left(\psi, \iota_{9}\right)=(c / b) A\left(\psi \rightarrow \iota_{9} \gamma\right) / A\left(\iota_{1} \rightarrow \rho \gamma\right)$,
and λ_{ψ} is a suppression factor to account for the extrapolation from $q^{2}=m_{\psi}^{2}$ to $q^{2}=0$. Eliminating $M\left(\psi, \iota_{9}\right)$, the following relation emerges

$$
\begin{align*}
& A(\iota \rightarrow \gamma \gamma) / A(\iota \rightarrow \rho \gamma) \\
& \quad-\frac{2}{3} \sqrt{2}\left(e / f_{\rho}\right) \lambda_{\psi} A(\psi \rightarrow \iota \gamma) / A(\iota \rightarrow \rho \gamma) \\
& \quad=\frac{4}{3}\left(e / f_{\rho}\right) G(x) . \tag{17}
\end{align*}
$$

This enables one to express $\Gamma(\imath \rightarrow \gamma \gamma) / \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma)$ in a similar form as (6a)

$$
\begin{align*}
& \Gamma(\iota \rightarrow \gamma \gamma) / \Gamma(\iota \rightarrow \rho \gamma \rightarrow \pi \pi \gamma) \\
& \quad=0.625\left(1-m_{\rho}^{2} / m_{\imath}^{2}\right)^{-3}\left(1.34 e / f_{\rho \pi \pi}\right)^{2} g^{2}(x), \tag{18a}
\end{align*}
$$

where $g(x)$ is related to $G(x)$ as
$g^{2}(x)=G^{2}(x) /\left|1 \pm 0.027 \lambda_{\psi}[\Gamma(\psi \rightarrow \imath \gamma) / \Gamma(\imath \rightarrow \gamma \gamma)]^{1 / 2}\right|^{2}$.
However, the bound on $|G(x)|$ in (8a) should now be applied to $|g(x)|$. Thus

$$
\begin{align*}
& |G(x)|<(0.74 \pm 0.14) \\
& \quad \times\left|1 \pm 0.027 \lambda_{\psi}[\Gamma(\psi \rightarrow \iota \gamma) / \Gamma(\iota \rightarrow \gamma \gamma)]^{1 / 2}\right| \tag{19}
\end{align*}
$$

If the RHS is <0.5, then $|G(x)|$ is certainly less than 0.5 and Chanowitz's analysis goes through. However, this would mean either

$$
\begin{align*}
& {[\Gamma(\psi \rightarrow \iota \gamma) / \Gamma(\imath \rightarrow \gamma \gamma)]^{1 / 2}>0.3 / 0.027 \lambda_{\psi}} \\
& \quad \approx 10 \lambda_{\psi}^{-1} \tag{20a}
\end{align*}
$$

or

$$
\begin{align*}
& {[\Gamma(\psi \rightarrow \iota \gamma) / \Gamma(\iota \rightarrow \gamma \gamma)]^{1 / 2}<1.67 / 0.027 \lambda_{\psi}} \\
& \quad \approx 60 \lambda_{\psi}^{-1} . \tag{20b}
\end{align*}
$$

Even if $\lambda_{\psi} \approx O(1)$, we should, either have $\Gamma(\psi \rightarrow \iota \gamma)$ $\gg \Gamma(\iota \rightarrow \gamma \gamma)$ or $\Gamma(\psi \rightarrow \iota \gamma) \ll \Gamma(\iota \rightarrow \gamma \gamma)$. Neither the theoretical nor the experimental limits on $\Gamma(\iota \rightarrow \gamma)$ seem to favour such a possibility.

I would like to thank Jan Govaerts for numerous discussions and for reading the manuscript. I am also thankful to the members of the Institut für Theoretische Physik, Bern for warm hospitality. This work was supported in part by Schweizerischer Nationalfonds.

References

[1] M.S. Chanowitz, Phys. Lett. B 164 (1985) 379.
[2] J. Richman, Ph.D. thesis, report CALT-68-1 231 (1985).
[3] N. Wermes, Invited talk Physics in Collision V Conf. (Autun, France, July 1985), preprint SLAC-PUB-3730.
[4] J.L. Rosner, Phys. Rev. D27 (1983) 1101;
B. Baghi anr A. Lahiri, J. Phys. G 12 (1986) 479.

