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Abstract

We discuss certain features of pseudo-Hermiticity and weak pseudo-Hermiticity
conditions and point out that, contrary to a recent claim, there is no inconsistency
if the correct orthogonality condition is used for the class of pseudo-Hermitian, PT-
symmetric Hamiltonians of the type Hβ = [p+ iβν(x)]2/2m+ V (x).
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In recent times it has been stressed that neither Hermiticity nor PT symmetry serves as

a necessary condition for a quantum Hamiltonian to preserve the reality of its bound-state

eigenvalues [1, 2, 3, 4, 5]. In fact, it has been realized [5] that the existence of real eigenvalues

can be associated with a non-Hermitian Hamiltonian provided it is η-pseudo-Hermitian:

ηH = H†η, (1)

where η is a Hermitian linear automorphism and, assuming ~ = 2m = 1,

H = p2 + V (x) (2)

for V (x) ∈ C and p = −i∂x. Then, in such a case, the spectrum of a diagonalizable H is

real if there exists a linear invertible operator O such that η = (OO†)−1. Moreover, one

can relax H to be only weak pseudo-Hermitian [6] by not restricting η to be Hermitian.

The purpose of this Letter is to establish the following results:

(i) The twin concepts of pseudo-Hermiticity and weak pseudo-Hermiticity are complemen-

tary to one another.

(ii) For a first-order differential realization, η may be anti-Hermitian but for the second-

order case, η is necessarily Hermitian. For both cases, we make connections to the same

PT-symmetric Scarf II Hamiltonian (having normalizable eigenfunctions) to show that the

choice of η is not unique in ascertaining the character of the Hamiltonian.

(iii) For the class of η-pseudo-Hermitian, PT-symmetric Hamiltonians described by [7, 8] 1

Hβ = [p+ iβν(x)]2 + V (x), β ∈ R, (3)

where the odd function ν(x) ∈ R, V (x) is PT-symmetric, and

η = exp
[

−2β
∫ x

ν(y)dy
]

, (4)

our earlier derivation [9] of the generalized continuity equation for Hamiltonians of the

form (2) [with V (x) PT-symmetric] can be extended to Hβ as well. The resulting η-

orthogonality condition needs to be implemented judiciously.

1Note that in Ref. [8], it is assumed that ~ = m = 1 instead of ~ = 2m = 1.
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We begin by addressing to the point (i) above. Consider some non-Hermitian η that

is subject to the condition (1). Taking Hermitian conjugate, we obtain, on adding and

subtracting, the following combinations

η+H = H†η+, η−H = H†η−, (5)

where η± = η ± η†. While the first one of (5) corresponds to strict pseudo-Hermiticity,

the second one points to weak pseudo-Hermiticity with a new anti-Hermitian operator η−.

Note that η+ is Hermitian. It is thus clear that weak pseudo-Hermiticity is not more general

than pseudo-Hermiticity but works complementary to it.

We now turn to (ii). Decomposing V (x) and η as

V (x) = VR(x) + iVI(x),

η =
d

dx
+ f(x) + ig(x), (6)

where VR, VI , f , g ∈ R, we get, on inserting (6) into (1), the relations

VI = i(f ′ + ig′),

V ′
R + iV ′

I = −(f ′′ + ig′′)− 2iVI(f + ig). (7)

In (7) the primes denote the order of differentiations with respect to the variable x. We are

then led to the conditions

V ′
R = −2gg′, cg′ = 0, c ∈ R, (8)

which imply the existence of two solutions corresponding to c = 0 and g′ = 0, respectively.

In the following we concentrate on the case c = 0 because g′ = 0 yields a trivial result that

corresponds to a real constant potential with no normalizable eigenfunction.

For the choice c = 0, it turns out that

f = 0, VR = −g2 + k, VI = −g′, (9)

where k ∈ R. In consequence, we have the results

V (x) = −g2(x) + k − ig′(x),

η =
d

dx
+ ig(x). (10)
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The above form of V (x) shows that, in the framework of supersymmetric quantum mechan-

ics, we can associate to it an imaginary superpotential W (x) = ig(x), its partner being the

complex conjugate potential. We also observe that, for even g functions, the representation

of η makes it anti-Hermitian in character. Let us consider the following specific example

for g = d sech x, d ∈ R. We get from (10)

V (x) = −d2 sech2 x+ k + id sech x tanh x,

η =
d

dx
+ id sech x. (11)

It is obvious that V (x) is a particular case of the generalized PT-symmetric Scarf II

potential investigated previously by us [10] in connection with the complex algebra sl(2, C).

A comparison with the results obtained there shows that, in the present case, we have

a single series of real eigenvalues with normalizable eigenfunctions provided d > 1
2
. The

corresponding Hamiltonian is both P-pseudo-Hermitian and η-weak-pseudo-Hermitian with

η given by (11). Our example confirms the assertion [11] that, for a given non-Hermitian

Hamiltonian, there could be infinitely many η satisfying the weak-pseudo-Hermiticity or

the pseudo-Hermiticity condition.

We next attend to a second-order differential representation of η:

η =
d2

dx2
− 2p(x)

d

dx
+ b(x), (12)

where p, b ∈ C. Substituting (12) into the condition (1), we obtain the constraints

b = −p′ + p2 −
p′′

2p
+

(

p′

2p

)2

+
γ

4p2
,

V = 2p′ + p2 +
p′′

2p
−

(

p′

2p

)2

−
γ

4p2
− δ,

V ∗ = −2p′ + p2 +
p′′

2p
−

(

p′

2p

)2

−
γ

4p2
− δ, (13)

where γ, δ ∈ R. From the last two relations in (13), it is clear that p(x) must be pure

imaginary,

p(x) = ia(x), (14)
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where a(x) ∈ R. As such V (x) and η acquire the forms

V (x) = 2ia′ − a2 +
a′′

2a
−

(

a′

2a

)2

+
γ

4a2
− δ,

η =
d2

dx2
− 2ia(x)

d

dx
+ b(x), (15)

with b(x) = −V (x) + ia′ − 2a2 − δ. In (15), η can be easily recognized to be a Hermitian

operator since it can be written in the form η = −Õ†Õ, where Õ = d
dx

+ r − ia, Õ† =

− d
dx

+ r + ia, and r2 − r′ = a′′

2a
−
(

a′

2a

)2
+ γ

4a2
. In Ref. [12], such a decomposition of η was

assumed, a priori, to arrive at some non-Hermitian Hamiltonians with real spectra.

Let us, however, confine ourselves to the following choice

a(x) = −1
2
B(2A+ 1) sech x, γ = 0, δ = 1

4
, (16)

where A + 1
2
> 0, B > 0, and A − B + 1

2
is not an integer. We are again led to the PT-

symmetric Scarf II potential having a more general form than obtained with the first-order

differential realization of η:

V (x) = −V1 sech
2 x− iV2 sech x tanh x, (17)

where V1 =
1
4
[B2(2A+ 1)2 + 3] > 0 and V2 = −B(2A+ 1) 6= 0. According to Refs. [13, 14],

the condition for real eigenvalues for the Hamiltonian corresponding to (17) is |V2| ≤ V1+
1
4
.

Here it amounts to [B(2A + 1)− 2]2 ≥ 0, which is always met.

Of particular interest is the special case B = 1:

V (x) = −(A2 + A + 1) sech2 x+ i(2A+ 1) sech x tanh x. (18)

On setting A + 1
2
= −λ (λ < 0), Eq. (18) can be seen to reduce to the potential V (1) − 1

4

of Ref. [15] for µ = 1. The associated energy levels of (18) are [10]: E(−λ)
n = −(λ+ n+ 1

2
)2

and coincide with E(2)
n − 1

4
of [15]. Note that there is, in general, a doubling of energy levels

in transiting from the real to the PT-symmetric Scarf II potential. In fact, the second

algebra of sl(2, C) leads to an additional energy level E
(1)
0 = −1

4
that is consistent with the

zero-energy state of [15].
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Finally, we take up a general derivation of the continuity equation for the class of

Hamiltonians Hβ given by (3). The associated Schrödinger equation reads

i
∂ψ(x, t)

∂t
= −

(

−
∂

∂x
+ βν(x)

)2

ψ(x, t) + V (x)ψ(x, t). (19)

From this it follows that the function ψ∗(−x, t) satisfies

− i
∂ψ∗(−x, t)

∂t
= −

(

−
∂

∂x
+ βν(x)

)2

ψ∗(−x, t) + V (x)ψ∗(−x, t). (20)

On considering Eq. (19) for some solution ψ1(x, t) and Eq. (20) for some other so-

lution ψ2(x, t) and then multiplying (19) and (20) by exp [−2β
∫ x ν(y)dy]ψ∗

2(−x, t) and

exp [−2β
∫ x ν(y)dy]ψ1(x, t), respectively, we obtain, on subtracting, a natural generalization

of the continuity equation for PT-symmetric quantum mechanics to its η-pseudo-Hermitian

extension, namely
∂Pη(x, t)

∂t
+
∂Jη(x, t)

∂x
= 0, (21)

where

Pη(x, t) = ηψ∗
2(−x, t)ψ1(x, t),

Jη(x, t) =
η

i

[

ψ∗
2(−x, t)

∂ψ1(x, t)

dx
− ψ1(x, t)

∂ψ∗
2(−x, t)

dx

]

, (22)

and η is defined in (4). If ψ1(x, t) → 0 and ψ2(x, t) → 0 as x → ±∞, as is normally

expected for bound-state wave functions, then integration of (21) over the entire real line

gives the conservation law

∂

∂t

∫ ∞

−∞
dx η ψ∗

2(−x, t)ψ1(x, t) = 0. (23)

In the case of energy eigenfunctions

ψ1(x, t) = u1(x)e
−iE1t, ψ2(x, t) = u2(x)e

−iE2t, (24)

corresponding to the eigenvalues E1 and E2 respectively, Eq. (23) reduces to

(E1 − E∗
2)
∫ ∞

−∞
dx η u∗2(−x)u1(x) = 0. (25)
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Equation (25) represents the η-orthogonality condition [5]. Obviously it transforms to the

PT-orthogonality [9, 16]

(E1 −E∗
2)
∫ ∞

−∞
dx u∗2(−x)u1(x) = 0 (26)

for ν(x) = 0. Indeed Eq. (25) can be derived from (26) by effecting a gauge transforma-

tion on the wave functions u of H in a manner u → exp[−
∫ x βν(y)dy]u, V (x) being PT-

symmetric. As such Hβ may be looked upon as a gauge-transformed version ofH . However,

it needs to be emphasized that care should be taken to correctly implement the normaliza-

tion conditions deriving from (25) and (26) and which are appropriate to the Hamiltonians

Hβ and H , respectively. Thus although PT-symmetric, the form of the η-pseudo-Hermitian

Hamiltonian Hβ at once suggests that the normalization condition related to (25) is to be

used rather than that connected with (26), a point overlooked in Ref. [8].

In summary, we have shown that η-pseudo-Hermiticity and weak pseudo-Hermiticity

are essentially complementary concepts. We have provided an explicit example of PT-

symmetric Scarf II model to demonstrate that η does not necessarily have a unique rep-

resentation to determine the character of the associated non-Hermitian Hamiltonian. We

have also pointed out the correct use of the η-orthogonality condition when dealing with a

pseudo-Hermitian gauge-transformed Hamiltonian.
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