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Abstract

Models of biochemical networks are frequently complex and high-dimensional. Reduction 

methods that preserve important dynamical properties are therefore essential for their study. 

Interactions in biochemical networks are frequently modeled using Hill functions (xn/(Jn + xn)). 

Reduced ODEs and Boolean approximations of such model networks have been studied 

extensively when the exponent n is large. However, while the case of small constant J appears in 

practice, it is not well understood. We provide a mathematical analysis of this limit, and show that 

a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically 

justified. The piecewise linear systems have closed form solutions that closely track those of the 

fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior 

of the original system. We justify the reduction using geometric singular perturbation theory and 

compact convergence, and illustrate the results in network models of a toggle switch and an 

oscillator.
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1 Introduction

Accurately describing the behavior of interacting enzymes, proteins, and genes requires 

spatially extended stochastic models. However, such models are difficult to implement and 

fit to data. Hence simplified models are frequently used instead. In many such models, a 

single ODE is used to describe changes in concentration of a species (a node in the 

network), and sigmoidal functions to describe interactions between them. Even such 
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simplified ODEs are typically intractable. The number of parameters and the potential 

dynamical complexity make it difficult to fully analyze the systems using only numerical 

methods. Reduced models that capture the overall dynamics, or allow approximate solutions 

are of great help in this situation [Verhulst (2006); Hek (2010)].

An analytical treatment is possible in certain limits. Three main approaches have been 

developed to analyze models of biochemical interaction networks [Polynikis et al. (2009)]: 

Quasi Steady State Approximations (QSSA), Piecewise Linear Approximations (PLA), and 

discretizations of continuous time ODEs.

In certain limits, interactions between network elements become switch–like [Kauffman 

(1969); Glass (1975,b); Snoussi (1989); Mochizuki (2005); Alon (2006); Mendoza and 

Xenarios (2006); Davidich and Bornholdt (2008); Wittmann et al. (2009); Franke (2010); 

Veliz-Cuba et al. (2012); Casey et al. (2006); Sun et al. (2013)]. For example, the Hill 

function, f(x) = xn/(xn + Jn), approaches the Heaviside function, H(x – J), in the limit of large 

n, and the domain on which the network is modeled is naturally split into subdomains. The 

threshold, corresponding to the parameter J in the Hill function, divides the domain into two 

subdomains within which the Heaviside function is constant. Within each subdomain a node 

is either fully expressed, or not expressed at all. When n is large, the Hill function, f(x), is 

approximately constant in each of the subdomains, and boundary layers occur when x is 

close to the threshold, x ≈ J [Ironi et al. (2011)].

To simplify the system further, we can map values of x below the threshold to 0, and the 

values above the threshold to 1 to obtain a Boolean network (BN), a map

where each function hi describes how variable i qualitatively depends on the other variables 

[Glass and Kauffman (1973); Snoussi (1989); Thomas and D’Ari (1990); Albert and Othmer 

(2003); Mendoza and Xenarios (2006); Davidich and Bornholdt (2008); Abou-Jaoudé et al. 

(2009, 2010); Wittmann et al. (2009); Franke (2010); Veliz-Cuba et al. (2012); Cheng et al. 

(2013); Sun et al. (2013)]. Such reduced systems are simpler to analyze, and share the 

dynamical properties of the original system, if the reduction is done properly.

The reduced models obtained in the limit of a large Hill coefficient, n, have a long and rich 

history. Piecewise linear functions of the form proposed in [Glass and Kauffman (1973)] 

have been shown to be well suited for the modeling of biochemical regulatory networks, and 

can sometimes be justified rigorously [De Jong et al. (2004)]. In particular, singular 

perturbation theory can be used to obtain reduced equations within each subdomain and the 

boundary layers, and global approximations within the entire domain [Ironi et al. (2011)]. 

On the other hand, although BNs have been used to model the dynamics of different 

biological systems, their relation to more complete models was demonstrated mainly in case 

studies, heuristically or only for steady states [Glass and Kauffman (1973); Glass (1975,b); 

Snoussi (1989); Thomas and D’Ari (1990); Albert and Othmer (2003); Mendoza and 

Xenarios (2006); Davidich and Bornholdt (2008); Abou-Jaoudé et al. (2009, 2010); 
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Wittmann et al. (2009); Franke (2010); Veliz-Cuba et al. (2012); Chaves et al. (2010); 

Edwards et al. (2001); Sun et al. (2013)].

Here we again model interactions between nodes using the Hill function, xn/(xn + Jn). 

However, instead of assuming that n is large, we assume that J is small. Although the 

subsequent results hold for any fixed n, for simplicity we assume n = 1 (see the Appendix 

for a comment about the case n > 1).

More precisely, we consider a model biological network where the activity at each of the N 

nodes is described by ui ∈ [0, 1], and evolves according to

(1)

where J > 0, and the functions Ai = Ai(u), Ii = Ii(u) are affine and nonnegative. The 

parameter J could be different for each term in each equation, but the arguments and proofs 

do not change; so for simplicity we assume that all J’s are equal.

Here Ai and Ii describe how other variables affect ui and can represent the strength of 

activation/phosphorylation/production and inhibition/dephosphorylation/decay, respectively. 

The variables ui can represent species such as protein concentrations, the active form of 

enzymes, or activation level of genes. It is easy to show that the region 0 ≤ ui ≤ 1, 1 ≤ i ≤ N 

is invariant and Eq. (1) describes a system of equations whose solutions are constrained to 

[0, 1]N. Equations involving this special class of Hill functions are generally referred to as 

Michaelis-Menten type equations, and J the Michaelis-Menten constant [Michaelis and 

Menten (1913); Goldbeter and Koshland (1981); Goldbeter (1991); Novak and Tyson 

(1993); Novak et al. (2001); Tyson et al. (2003); Ciliberto et al. (2007); Davidich and 

Bornholdt (2008); Ma et al. (2009)].

This type of model has been used widely [Goldbeter and Koshland (1981); Novak et al. 

(1998); Goldbeter (1991); Novak et al. (2001); De Jong (2002); Tyson et al. (2003); Ishii et 

al. (2007); Ciliberto et al. (2007); Davidich and Bornholdt (2008); van Zwieten et al. 

(2011)]. An important example is provided by a protein that can exist in an unmodified 

form, W, and a modified form, W*, (e.g. proteases, and Cdc2, Cdc25, Wee1, and Mik1 

kinases [Goldbeter (1991); Novak et al. (1998, 2001)]) where the conversion between the 

two forms is catalyzed by two enzymes, E1 and E2 [Goldbeter and Koshland (1981); 

Goldbeter (1991); Novak et al. (1998, 2001)]. However, the models of chemical reactions 

we consider can be rigorously derived from the Chemical Master Equation only in the case 

of a single reaction [Kumar and Josić (2011)]. The starting point of our reduction should 

therefore be regarded as phenomenological models of the system (see Appendix for details).

The case of small J has a simple physical interpretation in the case of models of enzymatic 

reactions: Consider the Hill function that appears in the Michaelis-Menten reduction 

scheme, which models the catalysis of the inactive form of some protein to its active form in 

the presence of an enzyme. When J is small the total enzyme concentration is much smaller 

than the total protein concentration. Also, the constant J is frequently very small in 
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published models of biological networks [Novak et al. (2001); Davidich and Bornholdt 

(2008)], which further motivates examining Eq. (1) when 0 < J ≪ 1.

We discuss a two step reduction

We first illustrate this reduction using two standard examples, and then provide a general 

mathematical justification. We note that the reduction obtained in the first step (see Eq. 

(14a)) is actually (algebraic) piecewise affine. However, it is customary to refer to the 

equation and the associated model as piecewise linear [Glass and Kauffman (1973); Snoussi 

(1989); Thomas and D’Ari (1990); De Jong (2002)]. We follow this convention.

The main idea behind the piecewise linear (PL) reduction is simple: If J ≪ x then the Hill 

functions, f(x) = x/(x+J) ≈ 1. However, when x and J are comparable, x ~ J, this is no longer 

true. In this boundary layer, we rescale variables by introducing . A similar 

argument works for the function (1 − x)/(J + 1 − x) (see Appendix). We show that using this 

observation, the domain [0, 1]N naturally decomposes into a nested sequence of hypercubes. 

The dynamics on each hypercube is described by a solvable differential-algebraic system of 

equations. The PL reduction therefore gives an analytically tractable approximate solution 

to the original system.

In the next step of the reduction we obtain a Boolean Network (BN): The PL approximation 

is used to divide [0, 1]N into chambers. Within nearly all of a chamber the rate of change of 

each element of the network is constant when J ≪ 1. We use these chambers to define a 

BN. A similar approach was used to motivate a Boolean reduction of a model protein 

interaction network [Davidich and Bornholdt (2008)].

The mathematical justification also follows two steps. We use Geometric Singular 

Perturbation Theory (GSPT) in Section 4.1 to justify the PL approximation. The justification 

of the BN reduction is given in Section 4.2. We show that there is a one-to-one 

correspondence between steady states (equilibrium solutions) of the BN and the full and PL 

system near the vertices of [0, 1]N. Futhermore, we show that this one-to-one 

correspondence between steady states is actually global (up to a set of small measure in [0, 

1]N). BNs have been used to study oscillatory behavior [Li et al. (2004); Abou-Jaoudé et al. 

(2009)], and we prove in Section 4.2.3 that under some conditions oscillations in a BN 

correspond to oscillations in the full system.

2 Examples

We start by demonstrating the main idea of our approach using networks of two and three 

mutually repressing nodes. These nodes can represent genes that mutually inhibit each other 

[Gardner et al. (2000); Elowitz and Leibler (2000)]. We remark that, although these genetic 

networks have been modeled in the past by Hill functions and decay terms, the systems we 

consider here can be used as phenomenological models of biochemical networks, and have 

been used as models in the case of enzyme activation/phosphorylation (Goldbeter and 
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Koshland, 1981; Novak et al., 1998; Goldbeter, 1991; Novak et al., 2001; De Jong, 2002; 

Tyson et al., 2003; Ishii et al., 2007; Ciliberto et al., 2007; Davidich and Bornholdt, 2008; 

van Zwieten et al., 2011). Thus, the theory we develop applies whenever the model given in 

Eq. (1) is applicable. We accompany these examples with a heuristic explanation of the 

different steps in the reduction.

2.1 A network of two mutually inhibiting elements

We start with the common toggle switch motif, i. e a network of two mutually repressing 

elements (see Fig. 1a) [Tyson et al. (2003); Gardner et al. (2000)]. Let (u1, u2) ∈ [0, 1]2 

represent the normalized levels of activity at the two nodes. Therefore, when ui = 1 the ith 

network element is maximally active (expressed). The activity of the two nodes in the 

system can be modeled by

(2)

where J is some positive constant. The structure of Eq. (2) implies that the cube [0, 1]2 = 

{(u1, u2) | 0 ≤ u1, u2 ≤ 1} is invariant (see Proposition 1).

2.1.1 Piecewise linear approximation—In the limit of small J, Eq. (2) can be 

approximated by a piecewise linear differential equation: If ui is not too close to zero the 

expression ui/(J + ui) is approximately unity. More precisely, we fix a small δ > 0, which 

will be chosen to depend on J. When ui > δ and J is small then ui/(J + ui) ≈ 1. Similarly, 

when ui < 1 − δ and J is small then (1 − ui)/(J + 1 − ui) ≈ 1.

With this convention in mind we break the cube [0, 1]2 into several subdomains, and define 

a different reduction of Eq. (2) within each. Let  denote the region where S is the set of 

variables that are close to 0, and T is the set of variables close to 1 (See Eq. (12)). We will 

omit the curly brackets and commas in  (e.g  and ) and (see Fig. 2a).

We first reduce Eq. (2) on each of the subdomains. The interior domain of [0, 1]2 consist of 

points where neither coordinate is close to 0 nor 1, and is defined by

(3)

Eq. (2), restricted to  is approximated by the linear differential equation

(4)

On the other hand, if one of the coordinates is near the boundary, while the other is in the 

interior, the approximation is different. For instance, the region

(5)

forms a boundary layer where u2 is of the same order as J.
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The term u2/(J + u2) cannot be approximated by unity. Instead the approximation takes the 

form

(6a)

(6b)

This equation can be simplified further. For simplicity we work on . Let 

 and consider  such that 

; that is,  is defined so that (u1(t), ) is on the 

nullcline of Eq. (6). It can be shown that if  then du2/dt < 0, and if 

then du2/dt > 0. Therefore, u2(t) approaches  as t increases. Thus, if (u1(t), u2(t)) is 

rapidly driven to this nullcline, then we can approximate Eq. (6) with

(7a)

(7b)

Note that Eq. (7a) is linear and decoupled from Eq. (7b), while Eq. (7b) is an algebraic 

system which can be solved to obtain u2 ≈ J/(2u1 − 1). Within  we thus obtain the 

approximation

(8a)

(8b)

We only have the freedom of specifying the initial condition u1(0), since u2(0) is determined 

by the solution of the algebraic equation (7b). As we explain below, this algebraic equation 

defines a slow manifold within the subdomain . The reduction assumes that solutions are 

instantaneously attracted to this manifold.

Table 1 shows how this approach can be extended to all of [0, 1]2. There are 9 subdomains 

of the square, one corresponding to the interior and four each to the edges and vertices. On 

the latter eight subdomains, one or both variables are close to either 0 or 1. Following the 

preceding arguments, variable(s) close to 0 or 1 can be described by an algebraic equation. 

The resulting algebraic-differential systems are given in the last column of Table 1. 

Furthermore, using ui(t) ≈ 0 for i ∈ S and ui(t) ≈ 1 for i ∈ T, we obtain a simple 

approximation of the dynamics in each subdomain which is 0-th order in J. For example, in 

, we obtain the approximation u1(t) ≈ 0.5t + u1(0), u2(t) ≈ 0.
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Each approximate solution can exit the subdomain within which it is defined if at some time 

ui ≈ 0 or ui ≈ 1 and the i-th coordinate of the vector field is positive or negative, 

respectively. This can happen when the sign of some entry of the vector field changes. Thus 

solutions can exit subdomains when they reach a nullcline. The global approximate solution 

of Eq. (2) is obtained by using the exit point from one subdomain as the initial condition for 

the approximation in the next. In subdomains other than  some of the initial conditions 

will be prescribed by the algebraic part of the reduced system. The global approximation 

may therefore be discontinuous, as solutions entering a new subdomain are assumed to 

instantaneously jump to the slow manifold defined by the algebraic part of the reduced 

system. This discontinuity may be overcome by “gluing” pieces of the solutions using 

matched asymptotics (especially when specific models are studied); however, since the 

discontinuity “jump” is negligible as J → 0, this approach provides a good approximation 

(Fig. 3ab)). Furthermore, the 0-th order approximation (i.e. the limit of the approximation as 

J → 0) will be continuous (Fig. 3c).

2.1.2 Boolean approximation—We now derive a Boolean approximation, h = (h1, h2) : 

{0, 1}2 → {0, 1}2, that captures certain qualitative features of Eq. (2). The idea is to project 

small values of ui to 0 and large values of ui to 1, and map the value of the i-th variable into 

0 and 1 depending on whether ui is decreasing or increasing, respectively. We will show that 

the resulting BN can be used directly to detect steady states in the corner subdomains.

Note that for a BN time is discrete; a time step in the Boolean approximation can be 

interpreted as the time it takes the original system to transition between different regions of 

[0, 1]2. Different transitions in the Boolean network may have different duration in the 

original system; so the time steps in the BN are only used to keep track of the sequence of 

events, but not their duration.

The reduction described in the previous section gives a linear ODE in the interior region 

(Eq. (4)). Since  approaches [0, 1]2 as J → 0, the approximating linear system provides 

significant information about the behavior of the full, nonlinear system for J small.

We first examine the nullclines. In Fig. 4 we can see that as J decreases, in the interior of [0, 

1]2 the nullclines of Eq. (2) approach the nullclines of Eq. (4) given by u2 = .5 and u1 = .5 

restricted to [0, 1]2. These lines divide the domain into four chambers (Fig. 2b), which we 

denote

On the other hand, the part of the nullclines inside the boundary subdomains are 

approximately the slow manifolds defined by equivalents of Eq. (8b). Here the slow 

manifolds converge to the nullclines as J → 0 (See Fig. 4).

We consider Eq. (2) in each chamber, starting with the first coordinate, u1(t). For any 

solution with initial condition in , the sign of  is positive and u1(t) increases within 

the chamber. We use this observation to define . The formal definition of this 
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function will be given below – intuitively hi(·) maps a chamber to 1 if ui is increasing within 

the chamber, and to 0 otherwise. Similarly, since u1(t) initially increases within , we let 

. Similarly we set , , , , , and 

. The i-th variable is “discretized,” i.e. mapped to 0 and 1 depending on whether 

ui is decreasing or increasing, respectively.

More formally, consider the set {0, 1}2, with each element, (i, j), identified with a chamber 

(e.g., the element (0, 1) represents the chamber ). Then h1 and h2 are defined as Boolean 

functions from {0, 1}2 to {0, 1} by setting h1 (0, 0) = 1, h1 (0, 1) = 0, h1 (1, 0) = 1, h1 (1, 1) 

= 0, and h2 (0, 0) = 1, h2 (0, 1) = 1, h2 (1, 0) = 0, h2 (1, 1) = 0. These two Boolean functions 

define a BN, h = (h1, h2) : {0, 1}2 → {0, 1}2. The functions also define a dynamical system, 

x(t + 1) = h(x(t)), x ∈ {0, 1}2.

The BN reduction can be obtained easily from the sign (evaluated coordinate-wise) of (.5 − 

u2, .5 − u1) at the vertices of [0, 1]2, since the sign of the vector field is constant within a 

chamber. To do so we use the the Heaviside function, H, defined by H(y) = 0 if y < 0, H(y) = 

1 if y > 0, and . For example, in , both entries increase. We can see this by 

evaluating H(.5 − u2) = H(.5 − u1) = 1 for u = (0, 0). Using the same argument in each 

chamber, we obtain the BN

(9)

where we used the convention that H acts entry-wise on each component in the argument.

2.1.3 Steady states of the BN and the PL approximation—While the BN gives 

information about which variables increase and decrease within a chamber, it is not yet clear 

how or if the dynamics of the BN in Eq. (9), and the PL approximation in Table 1 are 

related.

We next show that the steady states of the PL approximation near the vertices can be 

determined by the steady states of the BN. The reduced equations in the corner subdomains 

, , , and  are purely algebraic. When J is small, some of these equations have a 

solution in [0, 1]2, indicating a stable fixed point near the corresponding corner (in this case 

 and ). Others will not have a solution in [0, 1]2, indicating that solutions do not enter 

the corresponding subdomain (here  and ). Solutions that start in these subdomains 

will leave. To make the relationship between steady states less dependent on the actual 

parameters, consider the system

where x+ = max {x, 0} and x− = max{−x, 0} (note that x = x+ − x−). In the previous example 

b1 = b2 = .5,  and .
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Now, at the corner subdomain  we have the approximate equations,

or equivalently,

These equations have a solution in  if and only if b1 < 0 and b2 < 0, or equivalently, if 

and only if H(b1, b2) = (0, 0). A similar analysis leads to the following conditions for the 

existence of fixed points in each corner subdomain

More compactly, the condition is H(b1 −x2, b2 −x1) = (x1, x2), where x = (x1, x2) is the corner 

of interest. Hence, the BN can also be used to detect which corner subdomains contain 

steady states.

The relationship between steady states in the full system at the corner subdomains and the 

steady states of the BN is straightforward. However, since there are many update schemes 

for BNs, the relationship between trajectories is more subtle. For example, using 

synchronous updates we obtain the transition (0, 0) → (1, 1) which is not compatible with 

the solutions of Eq. (2) (See Fig. 5). On the other hand, using asynchronous update we 

obtain the transitions (0, 0) → (1, 0) and (0, 0) → (0, 1), which are more representative of 

the solutions of Eq. (2). Thus, we will focus on transitions that are independent of the update 

scheme, that is, transitions where only one entry changes.

2.2 A network of three mutually inhibiting elements

The same reduction can be applied to systems of arbitrary dimension. As an example 

consider the repressilator motif, i.e. a network of three elements where one is inhibited by 

another one (see Fig. 1a) [Tyson et al. (2003); Elowitz and Leibler (2000)]. As mentioned at 

the beginning of the section, this model is phenomenological. The model is described by

(10)

The cyclic repression of the three elements in this network leads to oscillatory solutions over 

a large range of values of J. The domain of this system, [0, 1]3, can be divided into 27 

subdomains corresponding to 1 interior, 6 faces, 12 edges, and 8 vertices.
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We can again approximate Eq. (10) with solvable differential–algebraic equations within 

each subdomain, to obtain a global approximate solution; and in the limit J → 0 we obtain a 

continuous 0-th order approximation. In contrast to the PL approximation, the 0-th order 

approximation does not take into consideration the specific value of J. However, the solution 

to the full system converges to the 0-th order approximation as J → 0 (See Fig. 6).

Note that both the numerically obtained solution to Eq. (10) and 0-th order approximation 

exhibit oscillations.

In this singular limit, solutions can exit a subdomain when they reach a nullcline of the 

linear system. For example, when u2 is close to 0 and a solution transitions from u1 > .4 to 

u1 < .4, the sign of the second entry of (0.6 − u3, 0.4 − u1, 0.3 − u2) changes from negative 

to positive; so the second coordinate of the solution starts increasing (see Fig. 6, panel (e)). 

Solutions therefore leave the subdomain on which u2 ~ J is small and enter the subdomain 

where u2 ≫ J. Similarly when u1 is close to 1, solutions transitions from u3 < .6 to u3 > .6, 

and the sign of the first entry of (0.6 − u3, 0.4 − u1, 0.3 − u2) changes from positive to 

negative. Hence the first coordinate of the solution starts decreasing (see Fig. 6, panel (f)), 

and solutions leave the subdomain where 1 − u1 ~ J and enter another where 1 − u1 ≫ J.

The BN corresponding to Eq. (10), h = (h1, h2, h3) : {0, 1}3 → {0, 1}3, is given by h(x) = 

H(0.6 − x3, 0.4 − x1, 0.3 − x2), where H is the Heaviside function acting entry-wise on the 

arguments. Eq. (10) does not have steady states at the corner subdomains, and neither does 

the corresponding BN. A subset of states belong to a periodic orbit of the BN:

Note that adjacent states in this orbit differ in a single entry. Thus, the transitions between 

the states have an unambiguous interpretation in the original system: The BN predicts that if 

the initial condition is in chamber , then solutions of Eq. (10) will go to chamber , 

then to , and so on. Indeed, solutions of Eq. (10), are attracted to a periodic orbit that 

transitions between the chambers in this order. The remaining two states form a period two 

orbit under synchronous update, (1, 1, 1) ↔ (0, 0, 0); here the BN does not give precise 

information about the dynamics of the original system. We will show that under certain 

conditions, orbits of the BN where only entry changes at each timestep, correspond to 

oscillations in the original system.

3 General reduction of the model system

The approximations described in the previous section can be extended to the more general 

model in Eq. (1):
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where J > 0 and Ai and Ii are activation/inhibition functions that capture the impact of other 

variables on the evolution of ui. The initial conditions are assumed to satisfy ui(0) ∈ [0, 1] 

for all i.

We assume that the activation and inhibition functions are both affine and nonnegative 

[Novak et al. (2001); De Jong (2002)],

(11)

where we use the convention x+ = max{x, 0} and x− = max{−x, 0}. The N × N matrix, W = 

[wij] and the N × 1 vector b = [b1 b2 … bN ]t capture the connectivity and external input to 

the network, respectively. In particular, wij gives the contribution of the jth variable to the 

growth rate of ith variable. If wij > 0, then wij appears in the activation function for ui; and if 

wij < 0 then −wij appears in the inhibition function for ui. The intensity of the external input 

to the ith element is |bi|, and it contributes to the activation or the inhibition function, 

depending on whether bi > 0 or bi < 0, respectively.

Proposition 1—The cube [0, 1]N is invariant for Eq. (1).

Proof: It will be enough to show that the vector field at any point on the boundary is not 

directed outward. Since, Ai ≥ 0 and Ii ≥ 0, for any i,

  □

3.1 The PL approximation

To obtain a solvable reduction of Eq. (1) we follow the procedure outlined in Section 2. We 

first present the results, and provide the mathematical justification in the next section. We 

will use δ = δ (J) > 0 to define the thickness of the boundary layers. We start with the 

subdivision of the N-dimensional cube, [0, 1]N.

Let T and S be two disjoint subsets of {1, 2, …, N}, and let

(12)

We extend the convention used in Table 1, and in Eqs. (3) and (5) so that  when S 

is empty;  when T is empty; and  when T, S are both empty.

Within each subdomain , Eq. (1) can be approximated by a different linear differential–

algebraic system. Following the reduction from Eq. (2) to Eq. (6), for i ∉ S ∪ T we obtain 

the linear system
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(13a)

For s ∈ S one of the nonlinear terms remains and we obtain

(13b)

while for t ∈ T we will have

(13c)

Eq. (13) is simpler than Eq. (1), but it is not solvable yet. Following the reduction from Eq. 

(6) to Eq. (7), we now further reduce Eqs. (13b–13c). First we use the approximations us ≈ 

0 and ut ≈ 1 in the activation and inhibition functions appearing in Eq. (13). Second, based 

on GSPT, we assume that us for s ∈ S and ut for t ∈ T are in steady state.

Under these assumptions we obtain the reduction of Eq. (1) within any subdomain 

(14a)

(14b)

(14c)

Eq. (14) is solvable since Eq. (14a) is decoupled, and Eqs.(14b) and (14c) are solvable for us 

and ut, respectively, as functions of the solution of Eq. (14a).

We remark that whenever one of the algebraic equations in Eq. (14) does not have a solution 

in a subdomain, the corresponding coordinate, say uj, will jump from the interior of the 

subdomain (uj ≈ 0 or uj ≈ 1) to the adjacent subdomain (uj ≫ 0 or 1 − uj ≫ 0).

Note that in the singular limit J = 0 the subdomains become corners, edges, faces, etc., and 

we obtain the 0-th order approximations:
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Alternatively, since as J → 0 the interior region  approaches (0, 1)N, it follows that the 0-

th order approximation can also be written as a linear system with the additional condition 

that solutions must remain in [0, 1]. Then, it follows that the closed form expression of the 

0-th order approximation is

(16)

where P is defined as

We remark that for models that are constructed using Hill functions, in the limit n → ∞ the 

vector field becomes an algebraic combination of Heaviside functions. Analogously in our 

framework, in the limit J → 0 the vector field becomes the “truncated” linear system given 

by Eq. (16). Thus, Eq. (16) can be seen as the J = 0 version of the classic piecewise linear 

systems that are constructed by combining Hill functions. Note that although Eq. (16) 

defines an ODE with discontinuous vector field, the solutions are continuous because the 

discontinuities in the vector field only force the system to remain in [0, 1]N and allows 

sliding on the boundary of [0, 1]N. Also, note that to construct the 0-th order approximation 

it is enough to know the matrix W and the vector b.

3.2 Boolean approximation

To obtain the Boolean approximation we follow the process described in Section 2. We 

consider the chambers determined by the complement of the union of the N hyperplanes 

 (restricted to [0, 1]N) where i = 1, …, N. We denote this set of 

hyperplanes by  and denote with Ω the set of all chambers ; 

alternatively Ω is the set of connected components of . 

We assume that  for all i = 1, …, N and for all x ∈ {0, 1}N. This guarantees that each 

corner of [0, 1]N belongs to a chamber. The set of parameters excluded by this assumption 

has measure zero.

Let S and T be two disjoint subsets of {1, 2, …, N} such that S ∪ T = {1, 2, …, N} and let x 

∈ {0, 1}N be the corner that belongs to the corner subdomain . Note that xi = 0 for i ∈ S 
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and xi = 1 for i ∈ T. The chamber  that contains the corner in subdomain  will be 

denoted by . We do not name the remaining chambers.

In general, the chambers can be more complex than in the examples of Section 2. Chambers 

do not have to be hypercubes, different corners may belong to the same chamber, and some 

chambers may not even contain a corner of [0, 1]N, as illustrated in Fig. 7. In the first 

example, (0, 1) and (1, 1) belong to the same chamber, that is, , and neither 

containing (0, 0), nor  containing (1, 0) are rectangles. Also, Ω has three elements: , 

, and . In the second example, two chambers do not contain any corner of [0, 1]2 

and are not named. Hence, Ω has four elements: , , and two unnamed 

chambers that contain no corners.

To define the BN, h = (h1, …, hN) : {0, 1}N → {0, 1}N at x ∈ {0, 1}N, we need to find the 

signs of the components of the vector field Wu + b on the chamber that contains x. Consider 

x ∈ . Within  the signs of the components of Wu + b do not change and are equal to 

the signs of the components of Wx + b. If the sign of the i-th component is negative, we let 

hi(x) = 0, and if the sign is positive we let hi(x) = 1. In general, we can write

(17)

Hence the value of the BN at a corner x ∈  is given by the Heaviside function, applied 

entry-wise to Wu + b. Note that corners that are in the same chamber get mapped to the same 

point.

Importantly, using Eq. (17) we can compute the BN directly from Eq. (1). For example, for 

Eq. (2) we have h(x1, x2) = H(0.5 − x2, 0.5 − x1); and for Eq. (10) we have h(x1, x2, x3) = 

H(0.6 − x3, 0.4 − x1, 0.3 − x2).

Below we show that up to a set of small measure, the BN preserves information about the 

steady states of the original system. We will also show that under some conditions, “regular” 

trajectories of a BN correspond to trajectories in the original system.

4 Mathematical justification

We next justify the different approximations made above: In Section 4.1 we use Geometric 

Singular Perturbation Theory (GSPT) to justify the PL approximation. In Section 4.2 we 

show that steady state information is preserved by the BN and that, under certain conditions, 

the BN also provides qualitative information about the global dynamics of the original 

system.

4.1 Piecewise linear approximation

To obtain the reduced equations at the boundary of [0, 1]N, we define the following rescaled 

variables
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(18)

Using Eq. (18) in Eq. (13) we get for i ∉ S ∪ T

(19a)

and for s ∈ S,

(19b)

and similarly, for t ∈ T,

(19c)

When J is small, we can apply Geometric Singular Perturbation Theory (GSPT) to Eq. (19) 

[Hek (2010); Kaper (1998)]. The GSPT posits that, under a normal hyperbolicity condition 

which we verify below, Eq. (19) can be further simplified by assuming that J = 0. This 

yields a differential-algebraic system

(20a)

(20b)

(20c)

which is equivalent to Eq. (14) after rescaling. This conclusion is justified if the manifold 

defined by Eqs. (20b) and (20c) is normally hyperbolic and stable [Fenichel (1979); Kaper 

(1998); Hek (2010)]. We verify this condition next.

Let û = {uj : j ∉ S ∪ T}, be the coordinates of u which are away from the boundary, and 

denote the right hand side of Eq. (20b) by Fs (û, ũs), for all s ∈ S, so that
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and

for all s ∈ S. Similarly, by denoting the right hand side of Eq. (20c) by Gt(û, ũt), for all t ∈ 

T. i.e.

we see that

Hence, the manifold defined by Eqs. (20b) and (20c) is normally hyperbolic and stable. This 

completes the proof that the reduction of the non-linear system (1) to the solvable system 

given in Eq. (14) is justified for small J.

4.2 Boolean approximation

Here we show that the steady states of the BN given in Eq. (17) are in a one-to-one 

correspondence with the steady states of the system given in Eq. (1). We also show that 

under some conditions trajectories in the BN correspond to trajectories of the system given 

in Eq. (1).

4.2.1 Steady state equivalence at the corner subdomains—First we prove the one-

to-one correspondence only at the corner subdomains using the PL approximation. We do 

this by showing that Eq. (14) has a steady state at a corner subdomain  if and only if the 

BN has a steady state at the corner x ∈ {0, 1}N contained in .

We proceed from Eq. (14) for a corner subdomain  so that S ∪ T = {1, …, N}. We obtain 

the equations
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and

For the sets S and T, consider x ∈ {0, 1}N such that xs = 0 for all s ∈ S and xt = 1 for all t ∈ 

T. Then, since , , , and 

, we can write the equations above in the form

and

or in the more compact form

and

Solving these equations for us and ut, respectively, we obtain

(21)

Now, let ∈ > 0 be sufficiently small so that ,  ≤ 1 for all 0 < J 

< ∈. Then, for all J such that 0 < J < ∈, Eq. (21) has a solution inside [0, 1]N if and only if

or equivalent if and only if
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which can be written more compactly as

Thus, a steady state appears in the corner subdomain corresponding to x if and only if x is a 

steady state of the BN h = (h1,…, hN) : {0,1}N → {0,1}N given by Eq. (17). We have 

proved,

Theorem 2: There is an ∊ > 0 such that for all 0 < J < ∊, Eq. (14) has a steady state at a 

corner subdomain containing x ∈ {0,1}N if and only if the BN described by Eq. (17) has a 

steady state at x.

Since the PL system given by Eq. (14) is a valid approximation of the full system given in 

Eq. (1) (guaranteed by GSPT as shown in Section 4.1), we also have the following corollary.

Corollary 3: There is an ∊ > 0 such that for all 0 < J < ∊, the system in Eq. (1) has a steady 

state at a corner subdomain containing x ∈ {0,1}N if and only if the BN in Eq. (17) has a 

steady state at x.

4.2.2 Global equivalence of steady states—We proved that, for J small, the steady 

states at the corner subdomains of the system in Eq. (1) are in a one-to-one correspondence 

with the steady states of the BN. However, the corner subdomains only cover a small portion 

of [0,1]N. We next show that the steady state correspondence is global (thus, generalizing 

Corollary 3).

Recall that  and that each chamber is a connected component of 

. The chambers are bounded convex open subsets of 

[0,1]N (with the topology inherited from [0,1]N ⊂ RN). Also note that  is the 

union of the hyperplanes in  and hence has measure zero. We denote by  the 

chamber that contains the point x ∈ [0,1]N.

Theorem 4: Let K be a compact subset of  such that  is convex for any 

, and such that  contains a neighborhood of x for each x ∈ {0,1}N.

Then, there is an ∊K > 0 such that for all 0 < J < ∊K, if x* ∈ {0,1}N is a steady state of the 

BN in Eq. (17), then the ODE in Eq. (1) has a steady state ; also, if u* ∈ K is a 

steady state of the ODE, then  for some steady state x* of the BN.

Furthermore, if x* is a steady state of the BN in Eq. (17), then the steady state of the ODE in 

Eq. (1) is unique in , converges to x* as J → 0, and is asymptotically stable.

Proof: See Appendix.  □
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We can make the set K in Theorem 4 as close to [0,1]N as desired. For example, for each 

chamber  and for r > 0, denote . By using r small, 

and denoting Lebesgue measure by μ, we can make 

 as small as desired. Hence, we 

have the following corollary.

Corollary 5: For any ∊ > 0, there is a set K ⊆ [0,1]N satisfying μ([0,1]N\K) < s and a number 

∊K such that for all 0 < J < ∊K, there is a one-to-one correspondence between the steady 

states of the BN in Eq. (17) and the steady states in K of the ODE in Eq. (1). Furthermore, 

the steady states of the ODE in K are asymptotically stable.

Note that the set K does not include the nullclines. Hence, steady states outside K are 

possible, and they could be stable. Such steady states can be studied using the PL 

approximation in Eq. (14a).

4.2.3 Equivalence of trajectories—We next examine under which conditions the 

trajectories of the BN in Eq. (17) correspond trajectories of the ODE given in Eq. (1). The 

main assumption in the rest of this section is that the hyperplanes in  divide [0,1]N into 2N 

chambers, and that each chamber contains a corner.

We say that the solutions of the system in Eq. (1) transition from K ⊆ [0,1]N to K′ ⊆ [0,1]N 

if for any solution of the system, u(t), with initial condition u(0) ∈ K, there exists  such that 

. The Hamming distance between x, y ∈ {0,1}N is defined as the number of entries 

where x and y differ; that is, d(x, y) := #{i ∈ {1, …, N} : xi ≠ yi}. We denote a transition h(x) 

= y (i.e. H(Wx + b) = y) with x → y. A trajectory is a sequence of transitions and is denoted 

similarly. We call a transition x → y regular if either (1) x = y or (2) d(x, y) = 1 and hj(y) = yj 

for the index j for which xi ≠ yi. In other words, a transition x → y in the BN is regular if x is 

a steady state or if x transitions to y by changing only one coordinate and this coordinate 

does not change back when transitioning from y to h(y). For example, if 000 → 100 → 111, 

then 000 → 100 is a regular transition (j = 1); on the other hand, if 000 → 100 → 010, then 

000 → 100 is not a regular transition. A trajectory is regular if each component transition is 

regular.

Theorem 6: Suppose that the hyperplanes in  divide [0,1]N into 2N chambers and 

consider a regular transition of the BN in Eq. (17), x → h(s). Then, there is a neighborhood 

K of x, and an ∊K > 0 such that for all 0 < J < ∊K the solutions of the ODE in Eq. (1) 

transition from K to . Also, if x is a steady state, the neighborhood K can be chosen 

to be invariant.

Proof: See Appendix.  □

Next for a steady state x define B1(x) = {y ∈ {0, 1}N : h(y) = x and d(x, y) ≤ 1}; that is, B1(x) 

is the set of states in the basin of attraction of x with Hamming distance at most 1 from x. 

The following corollary of Theorem 6 states that this part of the basin of attraction of x 
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corresponds to part of the basin of attraction of the steady state in the ODE in Eq. (1) 

corresponding to x.

Corollary 7: Suppose that x is a steady state of the BN in Eq. (17). Then, for every y ∈ 

B1(x), there is a neighborhood K of y and ∊K > 0, such that for all 0 < J < ∊K the solutions of 

the ODE in Eq. (1) transition from K to .

Note that Theorem 6 implies that for a regular trajectory of the BN in Eq. (17), x → h(x) → 

h2(x) →…→ hm(x), the solutions of the ODE in Eq. (1) will transition from a neighborhood 

of x to , from a neighborhood of h(x) to  and so on. To guarantee that a 

neighborhood of x will reach a neighborhood of hm(x) (that is, to guarantee that the result is 

“transitive”), we need the additional assumption that each hyperplane in  is orthogonal to 

some coordinate axis. Note that the example given in Section 2.2 satisfies this condition.

Theorem 8: Suppose that each hyperplane in  is orthogonal to some coordinate axis and 

let x → h(x) → … → hm(x) be a regular trajectory of the BN in Eq. (17). Then, for any 

compact set  there is ∊K > 0 such that for all 0 < J < ∊K, the solutions of the ODE 

in Eq. (1) transition from K to  following the order of the regular trajectory.

Proof: See Appendix.  □

For a steady state of the BN define B(x) = {y : there is a regular trajectory from y to x}. The 

following corollary of Theorem 8 implies that some states in the basin of attraction of a 

steady state of the BN in Eq. (17) correspond to chambers in the basin of attraction of a 

steady state of the ODE in Eq. (1).

Corollary 9: Suppose that each hyperplane in  is orthogonal to some coordinate axis and 

let x be a steady state of the BN in Eq. (17). Consider y ∈ B(x). Then, for any compact set 

, there exists ∊K > 0 such that for all 0 < J < ∊K, the solutions of the ODE in Eq. 

(1) transition from K to .

Similarly, we obtain the following corollary for oscillatory behavior.

Corollary 10: Suppose that each hyperplane  is orthogonal to some coordinate axis and 

let x1 → x2 → … → xp → x1 be a regular periodic orbit of the BN in Eq. (17). Then, for any 

compact set  and any positive integer m, there exists ∊K,m > 0 such that for all 0 

< J < ∊K,m, the solutions of the ODE in Eq. (1) transition between the chambers (starting at 

K) in the order , m times.

Note that the example in Section 2.2 satisfies the hypothesis of this last corollary. In general, 

Corollary 10 does not guarantee that the solution is periodic.

Finally, we note that the requirement that there are 2N chambers, each containing a corner is 

necessary. Even if we have a transition where only one variable changes (e.g. h(1, 0) = (0, 

0)), having an intermediate chamber can change the behavior of the solutions before they 

reach the chamber predicted by the BN. In the example shown in Fig. 8 the signs of the 
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vector field of the approximating linear system imply that the BN transitions from (1, 0) to 

(0, 0). However, solutions can transition from the chamber that contains (1, 0) to the bottom 

middle chamber and never reach the chamber that contains (0, 0). In summary, even having 

a transition where only one variable changes may not be sufficient to guarantee that the 

Boolean transition corresponds to a similar transition in the original system.

5 Discussion

Models of biological systems are frequently nonlinear and difficult to analyze 

mathematically. In addition, accurate models frequently contain numerous parameters whose 

exact values are not known. Thus, studying which parameters have a large impact on 

dynamics, and how a model can be simplified, is crucial in finding the features of biological 

systems that determine their behavior and responses. Reduction techniques that preserve key 

dynamical properties are essential in this endeavor.

We studied a special class of non-linear differential equation models of biological networks 

where interactions between nodes are described using Hill functions. When the Michaelis-

Menten constants are sufficiently small, the behavior of the system is captured by an 

approximate piecewise linear system and a Boolean Network. In this case the domain of the 

full system naturally decomposes into nested hypercubes. These hypercubes define 

subdomains within which a solvable linear–algebraic system approximates the original 

system. The Boolean Network is obtained from a decomposition of the domain into 

chambers and describes how solutions evolve between them.

The proposed reductions have a number of advantages: The piecewise linear approximation 

is not only easier to solve than the original system analytically, but also numerically (the 

original system becomes stiff for small J). Also, we have given the 0-th order approximation 

in closed form. When one is interested in qualitative behavior such as steady state analysis, 

the Boolean approximation can be very useful, especially when the dimension of the system 

is large. Also, the Boolean framework has been used to model many biological systems 

where it is assumed that interactions are switch-like and variables can be discretized. It is 

therefore important to know when, and in what sense such reduced systems can be justified, 

and in particular, what dynamical properties of the full system are captured by a reduction.

Although the case of large exponent n in the Hill function has been studied in the past [Glass 

and Kauffman (1973); Glass (1975,b); Snoussi (1989); Thomas and D’Ari (1990); Mendoza 

and Xenarios (2006); Davidich and Bornholdt (2008); Wittmann et al. (2009); Franke 

(2010); Veliz-Cuba et al. (2012)], the case of small J has been studied only recently and 

heuristically [Davidich and Bornholdt (2008)]. In this manuscript we have shown that the 

PL and the BN approximations are also valid for the case of small J, and have given explicit 

formulas for their computation. The BN approximation preserves steady state behavior and 

under further restrictions, it can also be used to infer the basins of attractions and oscillations 

in the original system. Note that the Boolean functions in the Boolean approximation are 

threshold functions, as used in earlier models [Li et al. (2004); Davidich and Bornholdt 

(2008b)]. Our results show that such BNs can indeed appear when approximating more 

detailed models, such as those described by Eq. (1). In summary, our results for the limit J 
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→ 0 complement previous results for the limit n → ∞, providing a useful framework for 

reducing nonlinear systems to PL systems and BNs.

A potential limitation in our arguments is that we have an approximation valid only in an 

asymptotic limit. It is unknown when and how the approximation breaks down. However, 

the approximation is still valid as J increases until we reach a bifurcation point, which can 

happen for relative large J or for values of J that are biologically relevant. Also, we have not 

provided a systematic relationship between the thickness of the boundary, δ, and the 

Michaelis-Menten constant, J. Numerical tests suggest that the relationship is between J = 

O(δ) and J = O(δ2). Another limitation of our analysis is that, in the general case, it is not 

known when the transitions or cycles in a BN will correspond to similar transitions or cycles 

in the original ODE.

Although the requirement of regularity may be restrictive, preliminary results indicate that 

our results hold under weaker requirements. However, the proofs seem to be much more 

technical. One such way to obtain a better agreement between the Boolean approximation 

and the original system is to use alternative update rules. For example, in the limit n → ∞, 

using an asynchronous update rule can some times give a better match between the Boolean 

approximation and the continuous system [Glass and Kauffman (1973); Glass (1975,b); 

Thomas and D’Ari (1990); Snoussi (1989); Abou-Jaoudé et al. (2009)]. However, an 

asynchronous update rule produces non-deterministic dynamics and trajectories have to be 

carefully defined. Our results also show that Boolean reductions of ODEs have to be 

interpreted with care in general. The correspondence between the BN and ODE dynamics is 

often implicitly assumed and we have shown that in general such a correspondence only 

holds for steady states. For trajectories and periodic orbits the relationship will not always be 

valid, but our theory gives precise conditions under which this dynamical correspondence 

holds.
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6 Appendix

6.1 Motivation of Eq. (1)

Here we present a heuristic justification of the use of Eq. (1). The ideas follow those 

presented in [Goldbeter and Koshland (1981); Goldbeter (1991); Novak et al. (1998, 2001); 

Tyson et al. (2003); Aguda (2006)]. As mentioned in the Introduction, this is only heuristic 

in general.

Consider a protein that can exist in an unmodified form, W, and a modified form, W*, where 

the conversion between the two forms is catalyzed by two enzymes, E1 and E2. That is, 

consider the reactions
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Then, using quasi-steady-state assumptions one can obtain the equation

where A, I, L, K1, K2 depend on k1, k−1, p1, k2, k−2, p2, [E1], [W E1], [E2], and [W *E2] 

[Goldbeter and Koshland (1981)]. After rescaling by L we obtain Eq. (1).

Now, consider a system with N species (e.g. proteins) and assume that ui(t) and vi(t) 

represent the concentration of species i at time t in its active and inactive form, respectively. 

Furthermore, suppose that the total concentration of each species is constant and that the 

difference between decay and production is negligible (so that ui(t) + vi(t) is constant). That 

is,

where Li does not depend on time, and

Then, using Michaelis-Menten kinetics, the rate of activation of this species can be modeled 

by

where the maximal rate, Ai = Ai(u), is a function of the different species in the network. 

Similarly, modeling the inhibition of the species using Michaelis-Menten kinetics, we obtain

Thus, we obtain

Now, we rescale ui → Liui, Ai → LiAi, Ii → LiIi and obtain
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Hence, by denoting  and , we obtain the system given in Eq. (1). Also, 

and  small means that the dissociation constants  are much smaller than the total 

concentration of species i; that is,  if and only if . Note that the 

initial conditions now satisfy ui(0) ∈ [0,1] for all i.

6.2 Behavior of 

Consider the one-dimensional system

(22)

Fig. 9 shows the graph of the right hand side of Eq. (22) for the fixed values A = 1, I = 0.5 

and three different values of J. Note that as J becomes smaller, the graph gets flatter in (0,1). 

Then, for J small, we can approximate Eq. (22) in the interior of the region [0,1] by the 

linear ODE

For x ~ J, we can approximate Eq. (22) by the ODE

And for x ~ 1 − J, we can approximate Eq. (22) by the ODE

For the values A = 1, I = 0.5 we obtain the following approximations.

Note that there is an asymptotically stable steady state close to 1. Intuitively, for J small, 

solutions that start in the region x ~ J quickly reach the region J ≪ x ≪ 1, which behaves 
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like a linear system. Then, solutions increase almost linearly (with slope 0.5) until they enter 

the region x ~ 1 − J where they will approach the steady state (see Fig. 10).

We see that in the limit J → 0 we obtain the solutions

where x(0) ∈ [0, 1]. Note that these functions are the solutions of the ODE

given in Eq. (16) (0-th order approximation).

6.3 Proof of Theorem 4

The main idea in the proof is to use the fact that for ui ≠ 0, 1, the right-hand side of Eq. (1) 

converges to Wu + b. More precisely, the convergence is uniform on compact subsets of (0, 

1)N; so that we have compact convergence.

Also, given a steady state of Eq. (1), we can solve for ui and obtain  (  will be 

defined later). The proofs also use the fact that as J → 0,  converges 

uniformly to the function  on compact subsets of each chamber. That is, we 

also have compact convergence of ΓJ.

To prove Theorem 4 we need the following definitions and lemmas.

A point u* ∈ [0, 1]N will be a steady state of the ODE in Eq. (1) if and only if

(23)

for all i. Solving the corresponding quadratic equation for  we obtain the solutions 

if Ai(u*) = Ii(u*); and

(24)

if Ai(u*) ≠ Ii(u*), where Δi(u*) is the discriminant of the quadratic equation, given by

The following lemma states that up to a set of small measure and for J small all steady states 

of the ODE in Eq. (1) are given by the fixed points of the function  defined 

by
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(25)

Lemma 11

For any compact subset K of , there is an ∈K > 0 such that for all 0 < J < ∈K the 

function ΓJ is well-defined (as a real-valued function) on K, and u* is a steady state in K of 

the ODE in Eq. (1) if and only if ΓJ(u*) = u*.

Proof—Since the denominator is not 0 on K, we need to show that Δi(u) is non negative on 

K for J small.

Since K is compact and  and for all u 

∈ K, there is r > 0 such that  on K. Then, since (Ai(u)

−Ii(u)−Ai(u)J−Ii(u)J)2+4Ai(u)J(Ai(u)−Ii(u)) converges uniformly as J→0 to (Ai(u)−Ii(u))2 ≥ 

r2 on K, there is ∈K > 0 such that for all 0 < J < ∈K the function (Ai(u)−Ii(u)−Ai(u)J

−Ii(u)J)2+4Ai(u)J(Ai(u)−Ii(u)) is positive on K for all i. Thus, ΓJ is well-defined for all 0 < J 

< ∈K.

If u* ∈ K and ΓJ(u*) = u*, then u* satisfies Eq. (24), and hence it is a steady state of the 

ODE in Eq. (1). Also, if u* is a steady state of the ODE in Eq. (1), then u* satisfies Eq. (24). 

However, only  is in [0,1] and hence u* = ΓJ(u*).  □

It is important to notice that if Ai(u) − Ii(u) > 0 then  (u) (which is well-defined for J 

small) converges to 1 and if Ai(u)−Ii(u) < 0 then (u) converges to 0 as J → 0. Hence, 

ΓJ(u) converges pointwise to H(Wu + b) on  as J → 0. The next lemma states that for 

any compact subset of  we have uniform convergence and that the derivative of this 

function converges uniformly to zero.

Lemma 12

If K is a compact subset of , then

• The function ΓJ converges uniformly to the function  on K as J → 

0. In particular, since H(Wu + b) is constant in each chamber, we get that for any 

chamber , ΓJ converges uniformly to the constant function H(Wv + b) 

on  for any fixed v ∈ C. Also, ΓJ converges uniformly to the constant 

function H(Wx + b) on  for any x ∈ {0,1}N

• The Jacobian matrix DΓJ converges uniformly to zero on K as J → 0.

Proof—Similar to the proof of Lemma 11, there is a number r > 0 such that |Ai(u) − Ii(u)| ≥ 

r for all i and for all u ∈ K, which is enough to guarantee uniform convergence on K.  □

We now prove Theorem 4
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Proof—In this proof, “ODE” will refer to the ODE in Eq. (1) and “BN” will refer to the BN 

in Eq. (17). Even though the steady states of this ODE depend on J, for simplicity we will 

denote them by u* instead of u*J.

First, from Lemma 11 we consider ∈K > 0 such that for all 0 < J < ∈K the function ΓJ is 

well-defined on K and such that u* ∈ K is a steady state of the ODE if and only if u* is a 

fixed point of ΓJ. Second, from Lemma 12 we have that ΓJ converges uniformly to the 

constant vector h(x) = H(Wx + b) on . Since h(x) is in {0, 1}N, we have that 

 contains a neighborhood of h(x). It follows from uniform convergence that for 

all 0 < J < ∈K (taking a smaller ∈K if necessary), . Also, on 

any chamber  that does not contain an element of {0, 1}N, ΓJ converges uniformly to the 

constant vector x := H(Wv + b) for any fixed ); then, for 

all 0 < J < ∈K (taking a smaller ∈K if necessary) . Also note that 

 is compact for any chamber .

Now, suppose x* is a steady state of the BN, that is, h(x*) = x*. Then, for all 0 < J < ∈K we 

obtain that . Since we have a continuous 

function from a convex compact set to itself, ΓJ has a fixed point . 

Then,  is a steady state of the ODE. Now suppose that the ODE has a steady 

state u* ∈ K, and let  be the chamber that contains u* and x*:= H(Wu* + b). Since 

, we have that . Since u* and x* belong 

to the same chamber we also have that H(Wx* + b) = H(Wu* + b) = x*; thus, x* is a steady 

state of the BN.

From Lemma 12 we can make the norm of DΓJ small so that u* is the unique fixed point of 

ΓJ in . Since ΓJ converges uniformly to  on , 

we have that u* = ΓJ(u*) converges to x*. Finally, to prove that the steady state of the ODE 

is asymptotically stable, we will show that the Jacobian matrix of the ODE can be seen as a 

small perturbation of a matrix that has negative eigenvalues. We will use the alternative 

form of :

Denote  where . We now compute 

Df(u). For i ≠ j we have

Also,
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Let ZJ be the matrix given by  and denote with EJ the 

diagonal matrix with entries . Then,

where the entries of ZJ are bounded and EJ is a diagonal matrix. We now will show that for 

any steady state of the ODE in K,  as J → 0. After showing this, we can 

see DfJ(u*) as a small perturbation of a matrix that has negative eigenvalues. Since 

eigenvalues are continuous with respect to matrix entries, it follows that the eigenvalues of 

DfJ(u*) have negative real part, and hence, u* is asymptotically stable.

We now show that  as J →0. By computing  and setting J = 0, it 

follows that  when Ai(u) − Ii(u) is negative. Similarly, we obtain that 

 when Ai(u) − Ii(u) is positive. From these two limits, it follows that 

if , then  or 

Furthermore, since Ai(u) − Ii(u) is uniformly nonzero on K, the convergence is uniform.

If u* ∈ K is a steady state of the ODE, then  and 

Note that uniform convergence is needed in the last step because u* depends on J.  □

6.4 Proof of Theorems 6 and 8

In the rest of this section, “ODE” will refer to the ODE in Eq. (1) and “BN” will refer to the 

BN in Eq. (17).

Notice that for any . We now 

prove Theorem 6.

Proof—Let y = h(x) and for simplicity in the notation, assume that y = (0,…, 0).
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In the case x = y, we will show that (0,…,0) contains an invariant set for the original ODE. 

Since x = (0,…,0) and h(x) = x, we have that . 

We now consider a hypercube of the form K = [0, D]N with D small so that . We 

claim that for J small K is invariant. Since we already showed that [0, 1]N is invariant, it is 

enough to check that if u ∈ K with ui = D, then . Since K is compact and 

 for all i and for all u ∈ K, there is r > 0 such that 

all u ∈ K. It follows that  converges uniformly to 

 on {u ∈ K : ui = D} as J → 0. Also, 

 on {u ∈ K : ui = D}. Thus, on 

{u ∈ K : ui = D},  is bounded above by a function that converges uniformly to a negative 

function. Then, there is ∈K > 0 such that for all 0 < J < ∈K,  is negative on {u ∈ K : ui = 

D}. Then, K is invariant.

In the case x ≠ y, we assume for simplicity that x = (1, 0,…,0) and y = (0, 0,…,0). Then, 

since h(x) = y and h1(y) = 0, we have the following

In particular,  for all . This also means that the 

hyperplane that separates  and  is  for some k ≠ 1; then, the 

common face of  and  is given by

Now, for r > 0 small, we define the set

which will be a face of the neighborhood of x that we are looking for (see Fig. 11). We now 

project L onto the u1 = 0 plane (see Fig. 11); that is, define

We use L1 to “generate” a box parallel to the u1 axis (see Fig. 11); namely, consider
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Now, consider the neighborhood of x given by

K is a polytope such that L is one of its faces. Similar to the case x = y, there is ∈K > 0 such 

that for all 0 < J < ∈K we have that for any face of K other than L the vector field points 

inward. Also, the first coordinate of the vector field is negative on K. Thus, any solution 

with initial condition in K, must exit K through its face L and then enter . That is, the 

ODE transitions from K to .  □

We prove Theorem 8.

Proof—We proceed as in the proof of Theorem 6 and for simplicity we assume that x = 

(1,0,…,0) and y = h(x) = (0,…,0). Since h(x) = y and h1(y) = 0, we have the following

In particular,  for all . This also means that the 

hyperplane that separates  and  is  for some k ≠ 1; 

furthermore, since this hyperplane is parallel to the axes, we have that (wk1, wk2,…,wkN) = 

(wk1, 0,…,0). Then, the hyperplane that separates  and  is  and the 

common face of  and  is given by

Now, let K be a compact subset of  and consider r > 0 small such that 

 (see Fig. 12). 

Since the hyperplanes in  are parallel to the axis, K0 is a box with faces parallel to the 

axes and K0 also shares a face with . Then, similar to the proof of Theorem 6, there is 

∈K > 0 such that for all 0 < J < K we have that at the faces of K0 other than that face shared 

with , the vector field of the ODE points inward, and the first entry of the vector field is 

negative. Then, the ODE will transition from K0 to .

Now, let K1 be a compact subset of  such that K1 intersects all solutions that start in 

K (see Fig. 12). Then, for all 0 < J < ∈K (making ∈K smaller if necessary) the ODE 

Veliz-Cuba et al. Page 30

Bull Math Biol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



transitions from K1 to . This also means that the ODE transitions from K0 to 

. The proof follows by induction.  □

6.5 Case n > 1

In this case, Eq. (1) becomes

The behavior of the system as J → 0 is similar. To illustrate this, we use the example from 

Section 6.2 for n > 1; namely, consider

(26)

Fig. 13 shows the graph of the right hand side of Eq. (26) for the fixed values A = 1, I = 0.5, 

three different values of J, and three different values of n. Note that as J becomes smaller, 

the graph gets flatter in (0,1) as in Section 6.2.

All definitions and results remain virtually unchanged except Sections 6.3 and 6.4. For n > 1 

Eq. (23) becomes

which cannot be solved in terms of  in closed form as in Eq. (24) and Eq. (25). However, 

we can use the implicit function theorem to guarantee the existence of a function ΓJ with the 

required properties (such as compact convergence to the Heaviside function).

6.6 Avoiding discontinuity of solutions in Eq. (14)

There is a way to make the approximations continuous, although it requires to change the 

equations in the boundary domains. The idea is to reduce the vector field using the 

approximations ut ≈ 1 and us ≈ 0 where appropriate, while keeping the derivatives.

For example for the region  we keep the derivatives and just use u1 ≈ 0 and u2 ≈ 0 in 

the right hand side of Eq. (2). This will yield

(27)

This is still a decoupled system and solvable.

Similarly for region , using u1 ≈ 1, u2 ≈ 1, we will get
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(28)

This is also decoupled and solvable, though it is not linear.

For regions  (u1 ≈ 0, u2 ≈ 1) and  (u1 ≈ 1, u2 ≈ 0) we will get

(29)

and

(30)

respectively. These equations are again decoupled and solvable, but again we lost the 

linearity.

We see that in each corner our original system can be approximated with decoupled, 

solvable equations. A similar idea can be used for other regions, but as seen above, this 

alternative approach introduces nonlinearity.
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Figure 1. 
(a) Nodes u1, u2 inhibiting each other’s activity resulting in a switch. The node which starts 

out stronger suppresses the activity of the other. (b) Nodes u1, u2, and u3 suppress each other 

in a cyclic fashion. Under certain conditions, this can lead to oscillations.
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Figure 2. 

Subdomains  for the unit square [0, 1]2 (panel a), and chambers of [0, 1]2 defined by the 

asymptotic behavior of the nullclines of Eq. (2) (panel b).
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Figure 3. 
Comparison of the numerical solution of Eq. (2) (dashed black) with the solution of the 

approximate system as listed in Table 1 (red) for two different values of J (panels (a) and 

(b)) and the 0-th order approximation (blue). We used J = 5 × 10−3 in (a), J = 10−3 in (b), 

and J = 10−4 in (c). We also used δ = 2 J. (a,b) The solution of the linear approximation 

started in the subdomain  (Initial value: u1 = 0.5, u2 = 0.25), and as soon as u2 decreased 

below δ, we assumed that the solution entered subdomain . The approximate solution is 

discontinuous since when u2 = δ, the solution jumped (see inset) to the manifold, described 

by the algebraic part of the linear differential algebraic system prevalent in the subdomain 

, Eq. (7b). The solution finally stopped in the subdomain . As J gets smaller, the 

discontinuity becomes negligible and the approximate system from Table 1 converges to the 

(continuous) 0-th order approximation. (c) The 0-th order approximation (black solid curve) 

becomes an accurate approximation of the original system as J → 0 (the solution from Table 

1 is not shown in panel (c)).
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Figure 4. 
Behavior of nullclines as J decreases. Top: Nullclines of Eq. (2) for J = 10−2 (left) and J = 

10−4 (right). Bottom: Nullcline  of Eq. (2) (black curve) and the manifold defined by 

Eq. (7b) (red) for J = 10−2 and δ = 10−2 (left), and J = 10−4 and δ = 10−2 (right).
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Figure 5. 
Left: Solutions of Eq. (2) for J = 10−4. When a solution is close to the boundary regions of 

 and , they enter the invariant region as shown in Fig. 3b. Right: Graphical 

representation of the Boolean transitions (00 → 11, 11 → 00, 01 → 01, 10 → 10).
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Figure 6. 
Comparison of the numerical solution of Eq. (10) (dashed black) and the 0-th order 

approximation (solid black curves) for two different values of J. For (a)–(b) J = 10−3; for 

(c)–(d) J = 10−4. Panel (e) shows the time series for the 0-th order approximation. Panel (f) 

shows the time series for the solutions of Eq. (10) using J = 10−4.
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Figure 7. 

chambers for  and  (left);  and 
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Figure 8. 

Chambers and signs of vector field for the linear system given by  and 

.
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Figure 9. 
Plots of right hand side of Eq. (22) for three different values of J, as functions of x. Other 

parameters: A = 1, I = .5. This figure suggests that differential equations of the form Eq. (22) 

can be approximated by linear ODEs in the interior of the domain.
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Figure 10. 
Solutions of Eq. (22) for three different values of J (left: J = 0.1, center: J = 0.01, right: J = 

0.001). Other parameters: A = 1, I = .5.
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Figure 11. 
Sets L (blue), L1 (red), and K (green) in the proof of Theorem 6 for N = 2.
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Figure 12. 
Sets K (light green), K0 (dark green and light green), and K1 (blue) in the proof of Theorem 

8 for N = 2.
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Figure 13. 
Plots of right hand side of Eq. (26) for three different values of J, as functions of x, and three 

different values of n (left: n = 2, center n = 5, right: n = 10). Other parameters: A = 1, I = .5.
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Table 1

A list of differential–algebraic systems that approximate Eq. (2) in different parts of the domain. The 

subdomains are named so that the superscript (subscript) lists the coordinates that are close to 1 (close to 0). 

For example,  denotes the subdomain with u1 ≈ 0 and u2 ≈ 1, and  the subdomain where u2 is near 1, 

but u is away the ≈ from boundary. The middle column gives the differential-algebraic system that 

approximates Eq. (2) within the given subdomain.

Subdomain Approximation using Eq. (14) Alternative approximation (Section 6.6)

same
same

same

same

same

same

no solution,
no solution

no solution,
no solution

Bull Math Biol. Author manuscript; available in PMC 2015 December 01.


