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Abstract

In this work an extended elliptic function method is proposed and applied to the generalized shallow water

wave equation. We systematically investigate to classify new exact travelling wave solutions expressible in

terms of quasi-periodic elliptic integral function and doubly-periodic Jacobian elliptic functions. The derived

new solutions include rational, periodic, singular and solitary wave solutions. An interesting comparison with

the canonical procedure is provided. In some cases the obtained elliptic solution has singularity at certain

region in the whole space. For such solutions we have computed the effective region where the obtained

solution is free from such a singularity.

Keywords: Shallow Water Wave Equation, Integrable Systems, Travelling Waves,
Jacobian Elliptic Function, Rational Solution, Singular Solution.

PACS number(s): 02.30.Jr, 02.30.Ik, 05.45.-a

∗bbagchi123@rediffmail.com
†supratimiitkgp@gmail.com
‡aganguly@maths.iitkgp.ernet.in, gangulyasish@rediffmail.com

1



1 Introduction

Seeking analytical as well as numerical solutions of nonlin-

ear systems has continued to attract attention through the

last few decades [1, 2, 3, 4, 5]. Mathematically, nonlin-

ear equations do not normally have solutions which would

superpose making the systems they represent rather com-

plicated and difficult to analyze [6, 7]. On the other hand,

an extensive study of a number of nonlinear systems has re-

vealed that there do exist solutions which are not only inter-

esting in their own right but have a wide range of applica-

bility [8, 9]. To generate exact solutions and to understand

their properties several important techniques have been de-

veloped such as the inverse scattering approach [10], Lax

pair formulation [11], Backlund transformations [12] and

Hirota’s bilinear method [13, 14]. Nonlinear equations

have also been shown to arise from a boundary value prob-

lem [15] possessing hierarchy of conservation laws [16].

An important class of solutions of nonlinear evolu-

tion equations is concerned with those of the travelling

waves that reduce the guiding partial differential equation

of two variables namely, x and t to an ordinary differ-

ential equation of one independent variable z = x − ct
where c(∈ R − {0}) is a parameter signifying the speed

with which the wave travels either to the right or left. A

number of methods has been employed in the literature to

obtain the travelling wave solutions of various types. Of

these the tanh-method stands out as one of the very ef-

fective tools for solving certain classes of nonlinear evo-

lution and wave equation [17]. Others include the varia-

tional iteration method for a class of linear and nonlinear

equations [18], homogeneous balance method [19], the hy-

perbolic method [20], the trigonometric method [21], Dar-

boux’s transformation [22], F-function method [23], G′/G-

expansion method [24], a unified algebraic method [25]

and more.

Recently the existence of travelling wave solutions for

the generalized shallow water wave (GSWW) equation

[26]

uxxxt+αuxuxt+βutuxx−uxt−uxx = 0 , (ul ≡
∂u

∂l
) (1)

with α, β ∈ R − {0} has been noted. The derivation of

(1) follows from the classical water wave theory with the

aid of Boussinesq approximation. In an interesting review,

Clarkson and Mansfield [27] considered the various clas-

sical and non-classical reductions of the GSWW equation

wherein they also investigated the Painlevé tests to examine

the complete integrability of (1) which holds if and only if

α = β or α = 2β. They explored some simple and non-

trivial family of solutions of (1) while in [28] a class of

exact travelling wave solutions were obtained by making

use of the homogeneous balance method and a modified

hyperbolic method.

In this article we plan to study the travelling wave solu-

tions

u(x, t) ≡ u(z) , z = x− ct , (2)

of the GSWW equation (1) in a more general framework.

We show that the canonical procedure namely, the classi-

cal technique [29], based on an integration within a suit-

able range not only recovers both known periodic (includ-

ing elliptic and trigonometric) and non-periodic hyperbolic

solutions, but also unfolds several new elliptic and ratio-

nal solutions. However such a constructive method has its

limitations in the sense that the range of validity of the ob-

tained solutions is fixed by the analysis of the zeros of the

governing cubic polynomial in u′(z) beforehand and so, in

practical applications, a particular solution proves difficult

to implement.

One of our aims is to go beyond this standard path by

proposing an extended method based on the use of Jaco-

bian elliptic functions. We refer to it as an extended elliptic

function (EEF) method. In this context the works of Refs

[30] and [31] worth to be mentioned which used the ellip-

tic functions for a class of nonlinear evolution equations.

These works consider a finite series expansion in the form

v(z) ≡ u′(z) =
m
∑

i=0

aiF
i(z) , (3)

to generate travelling wave solutions. In (3) the positive in-

teger m is determined by balancing the coefficients ai’s af-

ter substituting the expansion in the given nonlinear equa-

tion and comparing the relevant powers. Our EEF method

generalizes this approach by including the negative powers

of F thereby addressing the full-range series as given in the

following

v(z) =
m
∑

i=−m

aiF
i(z) . (4)

In Equation (4), F is an unknown functional constrained to

satisfy the relation

(F ′)2 = (1 + ε1F
2)(ε2 + ε3F

2) , (5)

where the prime denotes the derivative with respect to z
throughout the text. The important feature of the EEF

method is that it includes not only the positive integral

powers of F but also the negative ones. Our motivation

for keeping lower negative degrees of F comes from the

fact that in typical solvable systems like the Korteweg de

Vries the related spectral problem allows similar exten-

sions [32, 33]. It has been shown that these lower equations

may arise [33] as a necessary part of an extended symme-

try structure [34] while it is known [35] that the underlying

commutator generates the whole set of symmetry operators

for the system.
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It is not difficult to see that the biquadratic integral [36]

emerging from the constraint (5) facilitates expressing the

travelling wave solutions in terms of the Jacobian elliptic

functions pq(z − z0, k), where the symbol pq represents

twelve such distinct functions sn,cn,dn,ns(≡ 1/sn),cs(≡
cn/sn) etc. The novelty of the EEF method is that it

opens up a broad spectra of new travelling wave solu-

tions that include the already known ones (see for exam-

ple, [29, 31, 37, 38, 39]). We shall explicitly provide the

solutions generated from the EEF method for some special

selections of the integral parameters.

This article is organized as follows. In Section 2, we

derive the reduced ordinary differential equation for the

GSWW equation and then go for the classical technique

to obtain exact analytical solutions. In Section 3 we turn

to the constraint (5) to take up the construction of our new

procedure and then categorise different types of solutions

being generated from the EEF method by appealing to par-

ticular choices of the integral parameters. It will be seen

that the solutions in the appropriate limits reduce to pre-

viously known results. Finally, in Section 4 we present a

summary of our results.

2 Canonical procedure for the
GSWW equation

To start with, we substitute the form (2) into the GSWW

equation (1) that results in a fourth order ordinary differen-

tial equation

cu′′′′ + (α+ β)cu′u′′ + (1− c)u′′ = 0 . (6)

Let us note that the parameters α, β controls the strength

of non-linearity of above equation. Without loss of gen-

erality, one can leave one of them, say α, arbitrary while

the other parameter β may be varied to tune the strength of

non-linearity appropriate for the concerned physical situa-

tions. Three particular values of β namely β = ±α, α/2
are known to correspond completely integrable system. In

this article we shall explore the solutions of Equation (1)

leaving both of them arbitrary except for β = −α as it

points to the linear system and hence is well-known. It is

straightforward to obtain a second integral of (6) given by

3cu′′2+c(α+β)u′3+3(1−c)u′2+6cc1u
′+3cc2 = 0 , (7)

which may be expressed as a first order equation in terms

of the variable v(z) ≡ u′(z):

v′2 = −α + β

3
P3(v) ≡ −α + β

3

3
∏

j=1

(v − vj) . (8)

Note that in Equation (7) and also elsewhere in the text, the

arbitrary constants appearing through the process of inte-

gration are denoted by the symbol cj and will not be explic-

itly mentioned further. In (8) the monic cubic polynomial

P3(v) is given by

P3(v) = v3 +
3(1− c)

c(α+ β)
v2 +

6c1
α + β

v +
3c2

α + β
. (9)

For simplicity let us assume that all the three roots of P3(v)
are real and focus on the arrangement v1 ≥ v2 ≥ v3.
We consider first the non-degenerate case of distinct roots

for α + β < 0. A formal integration of (8) in the range

[(vj, zj), (v, z)], where the point zj is to be determined from

the transcendental equation v(zj) = vj , yields

∫ z

zj

dz = ±
∫ v

vj

dw

[(−α+β
3

)
∏3

j=1(w − vj)]1/2
. (10)

Now care is to be taken to choose the root vj , j = 1, 2 or 3
that defines the interval of validity of the solution. It is easy

to see that the reality condition for v(z) gives rise to two

different cases namely either v3 < v < v2 or v1 < v < ∞.

We address them by turn below.

Case 1: v3 < v < v2 (α + β < 0)

Keeping in mind that the range of integration is between

[v3, v] and [z3, z], the following change of variables w → ϕ
proves useful

w = v3 + (v2 − v3) sin
2 ϕ . (11)

The standard definition for Jacobian elliptic function then

expresses v(z) in a closed analytic form

v(z) ≡ u′(z) = v3 + (v2 − v3)sn2(ν(z − z3), k) , (12)

where ν =
√
[|α + β|(v1 − v3)/3]/2 and k2 = (v2 −

v3)/(v1 − v3)(0 < k2 < 1) is the modulus of the ellip-

tic function [40]. In terms of the elliptic integral function

of the second kind E(ϕℓ, k) through the relation sinϕℓ =
sn(ν(z − zℓ), k), defined by the integral

E(ϕℓ, k) =

∫ ϕℓ

0

√

1− k2 sin2 α dα , ℓ = 1, 3 , (13)

we obtain u(z), after integrating (12), in the final form

u(z) = u3+
v2 − k′2v3

k2
(z−z3)−

v2 − v3
νk2

E(ϕ3, k) . (14)

In the above solution and also in the following uj is defined

in a natural way as uj = u(zj), j = 1, 2, 3 while k′2 =
1− k2 is the complementary modulus of elliptic functions.

It may be pointed out that (14) is a new travelling wave

solution. Two interesting limits namely k → 1 and k → 0
may be of interest to notice that lead to the existence of a

double root of P3(v). For k → 1-0, we must let v1 → v2+0,

3



but then v3 cannot be allowed to coincide with v2 as this

will imply that the limiting solution has no range of va-

lidity. Along the same reasoning we conclude that the

limit k → 0 is disallowed for this case. Noting that

E(ϕ3, k → 1) = tanh[ν(z − z3)] the solution (14) thus

reduces to the hyperbolic form for k → 1-0

u(z) = u3 + v2(z − z3)−
v2 − v3

ν
tanh[ν(z − z3)] . (15)

Case 2: v1 < v < ∞ (α + β < 0)

Clearly the range of integration now lies between [v1, v]
and [z1, z]. Employing the substitution

w = v3 + (v1 − v3)cosec2ϕ , (16)

we obtain the following expression for v(z)

v(z) ≡ u′(z) = v3 + (v1 − v3)dc2(ν(z − z1), k) . (17)

The above equation, on further integration, yields another

new travelling wave solution

u(z) = u1 + v1(z − z1)−
v1 − v3

ν
[E(ϕ1, k)

−sn(ν(z − z1), k)dc(ν(z − z1), k)] . (18)

In above we have used the relation sn(z+K, k) = cd(z, k),

where K(k) =
∫ π/2

0
dα/

√

1− k2 sin2 α is the quarter real

period of elliptic sine function. Let us now take the limit

v2 → v1-0 keeping v3 < v2 that makes the travelling wave

solution linear in spatial and time coordinates

k → 1-0 : u(x, t) = (u1 − v1z1) + v1(x− ct) . (19)

On the other hand, letting v3 → v2-0 where v2 < v1, we

recover the periodic solution

k → 0 : u(z) = u1 + v2(z − z1) +
v1 − v2

ν
tan[ν(z − z1)] .

(20)

The case for α + β > 0 will give the result in comple-

mentary frame which can be derived along the same way

as before. Without giving the details of the procedure, we

are providing below the final solutions.

Case 3: v2 < v < v1 (α + β > 0)

v(z) = v1 − (v1 − v2)sn2(ν(z − z1), k
′) ,

u(z) = u1 +
v2 − k2v1

k′2
(z − z1) +

v1 − v2
νk′2

E(ϕ′
1, k

′) ,(21)

where sinϕ′
i = sn(ν(z − z1), k

′), i = 1, 3. To derive the

above we made the following substitution in (10)

w = v1 + (v2 − v1) sin
2 ϕ . (22)

Case 4: −∞ < v < v3 (α + β > 0)

v(z) = v1 − (v1 − v3)dc2(ν(z − z3), k
′) ,

u(z) = u3 + v3(z − z3) +
v1 − v3

ν
[E(ϕ′

3, k
′) (23)

−sn(ν(z − z3), k
′)dc(ν(z − z3), k

′)] ,

which comes from the following substitution in (10)

w = v1 − (v1 − v3)cosec2ϕ . (24)

It is interesting to note that in contrast to the Cases 1 and 2
for α+β < 0, the known hyperbolic and periodic solutions

are recovered for α+β > 0 (Cases 3,4) in the complemen-

tary limit of the elliptic solutions (21) and (23).

Finally let us deal with the degenerate case when P3(v)
has a triple zero, i.e. v1 = v2 = v3 = v0. From the cubic (9)

it is clear that we have to choose c2 = −2v0c1/3 giving the

multiple root v0 = (c − 1)/[c(α + β)]. The range of inte-

gration will be −∞ < v < v0 or v0 < v < ∞ according as

α+ β ≷ 0. The singular rational solution can be expressed

in a compact form as follows

P3(v) = (v−v0)
3 : u = v0(z−c3)+

12

α+ β

1

z − c3
+c4 ,

(25)

which was obtained in [28] from a different approach.

We have thus obtained several new solutions by apply-

ing the classical technique based on an analysis of the zeros

of a cubic polynomial. Interestingly in the appropriate lim-

its all the known solutions are retrieved. It is clear that for

practical applications of the solutions u(z) derived in this

section, a knowledge about the position of zeros of u′′(z) is

required which somewhat weakens their utility. In the next

section we propose a new method that is free from such a

limitation.

3 The EEF method for the GSWW equation

Here instead of focussing on the zeros of u′′(z) which are

unknown we fix the zeros of u′(z). Since u′′ has three zeros

[see Equation (8) of Sec. 2], it is obvious that u′ has four

zeros. This motivates us to propose the following construc-

tion.

3.1 Construction

Let us turn to the fourth-order ordinary differential equa-

tion (6) which we integrate to write

2cv′′ + c(α+ β)v2 + 2(1− c)v − c5 = 0. (26)
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Table 1: The solutions of the non-linear system (29) for the expansion

parameters aj, j = 0, 1, 2 are given. In the second column,ω = ε1ε2+
ε3.

Class (α+ β)a0 a1 (α+ β)a2
1 1− c−1 − 4ω 0 −12ε1ε3
2 1− c−1 − 4ω 0 0
3 1− c−1 − 4ω 0 −12ε1ε3
4 Arbitrary 0 0

We look for a formal solution in the form

v(z) =
m
∑

i=−m

aiF
i , (27)

where the generating functional F (z(x, t)) satisfies the

constraint (5). Note that the inclusion of negative powers

of F , in general, creates pole of u′ triggering the presence

of singular solutions in some situations. However, we ex-

plicitly show that such singular solutions are physically ac-

ceptable in a restricted domain of space labeled by (x, t, u).
Substituting the expansion (27) into Equation (26) points to

m = 2 and so the Lorentz-like expansion of v(z) reads

v(z) = a0 + a1F + a2F
2 +

a−1

F
+

a−2

F 2
. (28)

We next compute the expansion parameters ai that

needs term-by-term balancing of the coefficients of each

powers of F to zero. Somewhat involved but straightfor-

ward algebra leads to the following relations

F±4 : a±2[12 ∧± +(α+ β)a±2] = 0, [∧+ ≡ ε1ε3] ,

F±3 : a±1[2 ∧± +(α+ β)a±2] = 0, [∧− ≡ ε2] ,

F±2 : 8c(ε1ε2 + ε3)a±2 + (α+ β)c(a2±1 + 2a0a±2)

+ 2(1− c)a±2 = 0 , (29)

F±1 : c(ε1ε2 + ε3)a±1 + (α + β)c(a0a±1 + a∓1a±2)

+ (1− c)a±1 = 0 ,

F 0 : 4c(ε2a2 + ε1ε3a−2) + (α + β)c(a20

+ 2

2
∑

i=1

aia−i) + 2(1− c)a0 + c5 = 0 .

By exploiting (29) we can derive four classes of solu-

tions for aj and c5 which are summarized in Table 1 and Ta-

ble 2. From a previous work we already know that twelve

different choices exist (see Table I in [36]) for the zeros

of F in right-hand side of (5) that leads to different repre-

sentation for F (z) in terms of Jacobian elliptic functions.

Further for each of them one gets four classes of travelling

wave solutions of GSWW equation (1) corresponding to

the solutions furnished in Table 1 and Table 2. Our new

method is a generalized procedure and encompasses the

previously known solutions as special cases. In the next

Table 2: The integration constant c5 and a
−1, a−2 satisfying (29) are

provided where (Aj − ω2)/(ε1ε2ε3) = 12/(−4)j−1, for j = 1, 2 and

A3 = ca0(α+ β) + 2(1− c).

Class a
−1 (α+ β)a

−2 c(α+ β)c5
1 0 −12ε2 −(1− c)2 + 16c2A1

2 0 −12ε2 −(1− c)2 + 16c2A2

3 0 0 −(1− c)2 + 16c2A2

4 0 0 ca0A3(α+ β)

subsection we provide, as illustrative cases, four classes of

solutions for three particular choices of integral parameters

in Equation (5).

3.2 Class 1-4 solutions for particular selections
of integral parameters

To get explicit forms of Class 1–IV solutions obtained in

EEF method, it remains to choose the integral parameters

εj, j = 1, 2, 3 in the constraint F ′2 = (1 + ε1F
2)(ε2 +

ε3F
2). At first let us consider some degenerate selections

(i. e. taking a pair of double zeros of F ′) leading to hyper-

bolic, trigonometric and linear solutions.

• Algebro-hyperbolic Waves

The choice (ε1, ε2, ε3) = (−1, 1,−1) gives F (z) =
tanh z that generate the following solutions modulo a

constant

u = (a0+a2+a−2)z−a2 tanh z−a−2 coth z . (30)

The above solution reduces to linear form for Class 4

while singular term disappears in Class 3 solutions.

• Algebro-trigonometric Waves

Choosing (ε1, ε2, ε3) = (1, 1, 1), we get F = tan z
which gives following solutions apart from an inessen-

tial factor

u = (a0 − a2 − a−2)z + a2 tan z − a−2 cot z . (31)

Note that such types of algebro-hyperbolic and algebro-

trigonometric solutions are new and of interest. By choos-

ing suitable value of wave speed c the algebraic term can

be removed causing the reduction to known forms obtained

in [28]. Now using a canonical procedure we have already

obtained [ see (15) & (20) of Sec. 2] such types of solu-

tions in the extreme limits of modulus parameter of elliptic

functions. This means that more general forms of solutions

can be generated from EEF method provided F ′ has four

simple zeros.

We already mentioned that twelve different selections

are possible for the simple zeros of F ′ in the constraint (5)

leading to closed analytic expressions for F (z) in terms of

5



doubly periodic Jacobian elliptic functions. Here we pro-

vide explicit forms of the wave-solutions for the three rep-

resentative selections, two of which produce singular wave-

solutions of Class 1 and 2. Note that given non-linear pa-

rameters α, β we fix the the integration constant c5 of Equa-

tion (26) for a particular value of wave-speed c through a

relation as dictated by the last column of Table 2 and hence

that will not appear in the final expressions of the solutions.

-1.5K

0

1.5K

3K
x

0

1

2

t

-100

0

200
uH1L

-1.5K

0

1.5K

3K
x

Figure 1: Class 1 travelling wave for Selection I. The primary inputs: α =

0.5, β = 0.1, k = 0.7 and the scaling parameters are u0 = z0 = 0. The

humps are the signature of singularity.

• Selection I

Let us choose the zeros of F ′ as ±1,±1/k(0 <
k2 < 1) which correspond to the selection of triplet

(ε1, ε2, ε3) = (−1, 1,−k2) or (−k2, 1,−1). Choosing

z0 such that F (z0) = 0, one then obtains (see Table I

of [36])

F (z) = sn(z − z0) . (32)

Thus we are led to four classes of solutions of which

the first two (j = 1, 2) correspond to the singular so-

lutions :

Class j : v(j) = a0+a2sn2(z−z0)+a−2ns2(z−z0) ,
(33)

where ais are obtained from 1st and 2nd rows of Ta-

ble 1 & Table 2. The corresponding travelling wave

solutions u(j) are obtained from the integration of (33)

and involves a singularity at z = z0 as is evident from

the formula [40]
∫ z−z0

0

(

ns2τ − 1

τ 2

)

dτ = z − z0 +
1

z − z0
− E(ϑ0, k)− cn(z − z0)ds(z − z0) . (34)

In the expression (34) and also in the following ϑℓ is

defined by sin ϑℓ = sn(z − zℓ, k) for ℓ = 0, 1. In this

context it is worth mentioning that in the limit k →
1, the travelling wave reduces to coth-type solution

which also has a singularity at z = z0. This solution

was derived from a different approach in Ref. [28]. It

is well known that such a singular solution may serve

as a model for physical phemenon of so-called “hot-

spots” [41, 42, 43].

In the following our aim would be to find regions

where the travelling wave solutions (j = 1, 2) cor-

responding to (33) are regular. We use the follow-

ing infinite trigonometric series expansion [40] of

ns(z − z0, k) ≡ 1/sn(z − z0, k) :

ns(z − z0, k) =
π

2K
cosecτ

− 2π

K

∞
∑

n=0

q2n+1

1− q2n+1
sin[(2n+ 1)τ ] , (35)

where q = exp[−πK ′/K] is known as nome of the

elliptic functions and τ = π(z − z0)/2K, K ′(k) =
K(k′), the quantities K(k) and k have already been

defined in Sec. 2. Denoting the singular term in the

travelling wave solutions by the symbol S0, we see

that as z → z0, the asymptotic expression of its 1st

term will be

S0(z → z0) =
π

2K
cosecτ (36)

We will now use the well known expansion for cosecτ
convergent in the region |τ | < π

cosecτ =
1

τ
+

∞
∑

n=1

(−1)n−12(22n−1 − 1)B2n

(2n)!
τ 2n−1 ,

(37)

where {Bn} are Bernoulli numbers whose first few

members are B0 = 1, B1 = −1/2, B2 = 1/6, B4 =
−1/30 etc.

Combining (36) and (37), it is straightforward to con-

clude that near z ∼ z0, the travelling wave solution

behaves like (z− z0)
−1 i. e. the point z = z0 is a sim-

ple pole. Note that the region of convergence of the

series (37) for cosecτ is

|τ | < π ⇒ |z − z0| < 2K (38)

The above equation speaks of two parallel planes

x− ct− z0 ± 2K = 0 , (39)

6



which are normal to wave surface. These two planes

are shown in Fig. 1 [see two extreme strips orthogonal

to surface u = u(x, t)]. It is thus quite expected that

wave surface will be irregular along these two planes.

This fact can be appreciated from the humps along

the strips in Fig. 1 showing sudden rise of the value

u = u(x− ct). Further there must be a singularity at

z = z0. From elementary analysis we know that in

t-x plane the point z = x − ct approaches point z0
along any curve. Hence there will be a circular disc in

the plane z = z0 centred at z0 and of arbitrary small

radius where solution will show irregularity. This is

reflected by a single localized hump in Fig. 1 on the

plane lying parallel and midway between two extreme

planes.

To use such a solution we thus need an exact knowl-

edge about the position of parallel humps. These

may be exactly computed by the solid angles θx =
cos−1 |1/

√
1 + c2| and θt = cos−1 |c/

√
1 + c2|. These

two angles in turn depend on the parameter c which

determines the wave speed. Hence very fast and very

slow waves have different regions of humps. The core

singularity at z = z0 will however be present in same

region for all types of waves which may be removed

by making a hole of arbitrary small radius on the plane

z = z0 around point z0. This concludes our detailed

analysis about singularity of Class 1 and 2 solutions

for Selection I which hopefully provides a sufficient

basis of the solution regarding its potential use.

The other two classes correspond to the non-singular

solutions

Class j : v(j) = a0 + a2F
2 , j = 3, 4 . (40)

The resulting travelling wave solutions are of the

same form as the solutions (14) and (19) obtained in

Sec 2:

u(j) = u0 + (a0 +
a2
k2

)(z − z0)−
a2
k2

E(ϑ0, k) , (41)

where ais are to be computed from last two rows of

Table 1 and Table 2. Note that Class 4 solution is

linear in x and t, since a±1 = a±2 = 0 (see the last

rows of the tables).

• Selection II

Let us now choose pairs of purely real and of purely

imaginary roots of F ′ respectively as ±1/k′(0 <
k′2 = 1 − k2 < 1) and ±i/k which come from the

selection (ε1, ε2, ε3) = (−k′2, 1, k2) or (k2, 1,−k′2).
One then obtains the following representation of F (z):

F (z) = sd(z − z0, k) , (42)
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Figure 2: Class 1 travelling wave for Selection III for the same primary inputs

and scalings are u1 = z1 = 0. The smoothness of the wave-surface shows the

solution is non-singular.

leading to a new solution of u(z). The explicit expres-

sions for Class 1 and Class 2 are given by

u(j) = u0 + ̺j(z − z0)− (3− j)a−2E(ϑ0, k)

+(2−j)k2a−2sn(z−z0, k)cd(z−z0, k)+S0 (43)

for j = 1, 2, where we have abbreviated ̺j as ̺j =
a0 + (3− j)k′2a−2. The non-singular solutions corre-

sponding to Class 3 and 4 solutions read

u(j) = u0 +
(

a0 −
a2
k2

)

(z − z0) +
a2

k2k′2
E(ϑ0, k)

− a2
k′2

sn(z − z0, k)cd(z − z0, k) , j = 3, 4 . (44)

The main feature of Selection II is that the solutions

coming from that are nearly periodic in the whole do-

main due to the additional sn and cd-term. In con-

trast the solutions generated from Selection I are only

quasi-periodic, the periodic behaviour is observed for

singular solutions which are prominent near z ∼ z0.

• Selection III

We just saw that the Class 1 and 2 solutions generate

singular solutions owing to the generating functional

F (z(x, t)) possessing either a zero or a pole in the

region of validity. It is indeed possible to generate

non-singular solutions for these classes, which share

similar qualitative behaviour with the previous coun-

terparts, if F can be chosen to have neither zero nor

7



a pole in the finite part. Below we provide such an

example, which are the only one among the set of el-

liptic functions.

We choose the zeros of F ′ as ±1,±1/k′ correspond-

ing to the selection (ε1, ε2, ε3) = (−k′2,−1, 1). Then

we have the following representation of F (z) (see Ta-

ble I of [36])

F (z) = nd(z − z1, k) , (45)

where z1 is fixed as F (z1) = 1. It is now trivial to

check that the generated solutions for each of the four

classes remain non-singular

u(j) = u1 + a0(z − z1) + (3− j)a−2E(ϑ1, k)

− (2− j)k2a−2sn(z−z1, k)cd(z−z1, k) ; (46)

u(j) = u1 + a0(z − z1) + a2E(ϑ1, k)/k
′2 ,

− k2a2sn(z − z1, k)cd(z − z1, k)/k
′2 , (47)

where j = 1, 2 for Equation (46) and j = 3, 4 for

(47). Fig. 2 depicts a Class 1 wave guided by (46).

Other possible selections from Table I of [36] will gen-

erate many such new elliptic travelling wave solutions of

GSWW equation. Let us mention that the degenerate selec-

tions leading to hyperbolic and trigonometric type waves

can be obtained from elliptic solutions in k → 0, 1 limits.

4 Summary

In this article we proposed an extended method to generate

a rich class of doubly-periodic elliptic travelling wave solu-

tions of the GSWW equation. A systematic classification is

given for the solutions to exhaustively utilize the strength

of the proposed method. We also discussed a canonical

procedure for generating travelling wave solutions. The

problem with such solutions is that these require the pre-

knowledge of zeros of second derivative of the solutions.

The proposed EEF method removes this difficulty by fix-

ing the zeros of the first derivative of the solutions and

leads to a wide range of travelling waves which include

the kink type solitary wave [16], sinusoidal type periodic

solution [27] and a rational solution ([29]). Class 1 to 4

classify the various types of solutions whose explicit forms

are noted for three representative selections of integral pa-

rameters defining the generating functional. Classes 1 and

2 produce singular solutions which has important applica-

tion in modelling the physical curcumstances of formation

of hot-spots [41, 42, 43]. We have exactly computed the

positions of such blow-up of solutions and graphically il-

lustrated in the Fig. 1. To the best of our knowledge such

an analysis about the region of blow-up for singular elliptic

solutions has not been done previously in the literature.
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