
Journal of Computer and System Sciences 72 (2006) 955–977

www.elsevier.com/locate/jcss

Nearest neighbors search using point location
in balls with applications to approximate Voronoi decompositions ✩

Yogish Sabharwal a, Nishant Sharma b, Sandeep Sen b,∗

a IBM India Research Lab, Block-I, IIT Delhi, Hauz Khas, New Delhi 110016, India
b Department of Computer Science and Engineering, IIT, New Delhi 110016, India

Received 13 March 2003; received in revised form 27 December 2005

Available online 7 July 2006

Abstract

We present alternate reductions of the nearest neighbor searching problem to Point Location in Balls that reduces the space

bound of Sariel Har-Peled’s [S. Har-Peled, A replacement for Voronoi diagrams of near linear size, in: Proc. of IEEE FOCS, 2001,

pp. 94–103, full version available from http://www.uiuc.edu/~sariel/papers] recent result on Approximate Voronoi Diagrams to

linear while maintaining the logarithmic search time. We do this by simplifying the construction of [S. Har-Peled, A replacement

for Voronoi diagrams of near linear size, in: Proc. of IEEE FOCS, 2001, pp. 94–103, full version available from http://www.uiuc.

edu/~sariel/papers] that reduces the number of balls generated by algorithm by a logarithmic factor to O(n logn). We further

reduce the number of balls by a new hierarchical decomposition scheme and a generalization of PLEBs to achieve linear space

decomposition for nearest neighbor searching. The construction of our data structures takes O(n logn) time.

 2006 Elsevier Inc. All rights reserved.

Keywords: Voronoi diagrams; Approximate nearest neighbor; Data structures

1. Introduction

Let P be a set of n points in a metric space. One of the most fundamental problems with diverse applications is to

build a data structure on P that supports nearest neighbor searching efficiently. This problem has satisfactory solutions

when P is planar but becomes non-trivial in higher-dimensional Euclidean space even in three dimensions [5,9]. The

most general approach to nearest neighbor searching is to build a Voronoi diagram of P (to be denoted as Vor(P))

which is a partition of the space into cells such that a cell consists of all points that are closest to a specific point of P

than any other point of P . Voronoi diagrams are fundamental computing tools in computational geometry that have

many other applications, including clustering, motion planning, learning, surface reconstructions etc. Generalization

of Voronoi diagrams to objects beyond point sets are also equally useful (refer to Aurenhammer [6] for a detailed

survey). Despite its numerous applications, Voronoi diagrams suffer from the drawback of high structural complex-

✩ A preliminary version of this paper appeared in the Proceedings of the 22nd Annual FSTTCS 2002, Kanpur, India, Lecture Notes in Comput.

Sci., vol. 2556, Springer-Verlag.
* Corresponding author.

E-mail addresses: ysabharwal@in.ibm.com (Y. Sabharwal), nishantt@cse.iitd.ernet.in (N. Sharma), ssen@cse.iitd.ernet.in (S. Sen).

0022-0000/$ – see front matter 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcss.2006.01.007

956 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

ity (and consequent computational bottleneck). It is known that the worst case complexity in R
d is θ(n⌈d/2⌉) with

constants exponential in d . Therefore building and storing these diagrams becomes computationally infeasible with

growing dimensions.

As a result, alternate solutions for nearest neighbor searching in higher dimensions have been a hot topic of research

in recent years [1,4,8,12–14]. Since the exact problem seems intimately related to the complexity of Voronoi dia-

grams, the related relaxed problem of approximate nearest neighbor search has gained importance and has also shown

promise of practical solutions. Given a constant ε < 1, we want to preprocess the data-set P to get a data structure D,

such that given a query point q , we can efficiently return a p ∈ P such that ∀p′ ∈ P,dist(p, q) � (1 + ε)dist(p′, q).

Here, dist could be any arbitrary metric, and then p is an ε nearest neighbor (ε-NN) of q .

In the context of this paper, the work of Indyk and Motwani [12] holds special significance where they reduced the

problem of ε-NNS to Approximate Point Location in Equal Balls (ε-PLEB).

Definition 1.1. Given P and a parameter r , an ε-PLEB(P, r) is a data structure which when given a query point q

returns a point p ∈ P such that dist(p, q) � r , if there exists one. If there is no point p′ ∈ P with dist(p′, q) � r(1+ε),

then it returns nil. Otherwise, it can return anything. When ε = 0, then it is called PLEB(P, r).

Indyk and Motwani used a novel ring-cover tree to reduce ε-NNS to ε-PLEB. The ε-PLEB is solved by using a

simple hash-based technique. However, their reduction was quite complex which was improved in all respects in the

work of Har-Peled [11] who presented an alternate decomposition of space called an Approximate Voronoi Diagram

(to be referred as AVD) that supports approximate nearest neighbor searching and has a significantly lower space

complexity. His result can be summarized as follows.

Theorem 1.1 (Har-Peled). Given P of n points in R
d and a parameter ε > 0 one can compute a set C(P)

of O(n
logn

εd logn/ε) regions where each region is a cube or an annulus of cubes. The regions of C(P) are disjoint

and cover the space and each region has an associated point p ∈ P , so that for any point q ∈ c, the point p is a ε-NN

of q in P and it can be computed in O(log(n/ε)) steps.

The time for constructing the data structure is O(n
logn

εd log2 n/ε).

Har-Peled also used a more sophisticated data structure for solving ε-NNS based on the BBD data structure of

Arya et al. [1].

1.1. Our results

An important question left open in Har-Peled’s work was if AVD could be made linear-sized rather than near linear.

In this paper, we achieve reduction in space by extending some of the ideas of Har-Peled and generalizing the notion

of PLEBs to Point Location in Smallest Ball (PLSB) where the balls may be of different radii. We also define its

approximate version—for precise definitions, the reader may refer to Section 4. Har Peled [11] had also addressed

this problem implicitly—in a more ad-hoc manner.

Note that PLEB is a special case of PLSB, with all balls of equal radius.

Lemma 1.1. An ε-PLSB on n balls can be solved for d-dimensional space endowed with metric lp , in O(logn) query

time and O(n/εd) space.

The method is similar to Har-Peled [11]—we have included a summary in Appendix C. In the remaining paper we

will only bound the number of balls in the data structure which is linearly related to the space complexity.

In the next section, we eliminate the recursive structure of the Har-Peled’s algorithm by constructing a set of

balls directly from the clustering and also reduce the number of balls by a factor of logn. The search time remains

logarithmic and the preprocessing time is also improved by a factor of O(logn).

In Section 4, we improve the space bound to linear using a new hierarchical clustering scheme that is also based

on the MST of P . To reduce the preprocessing time (the exact MST construction takes nearly quadratic time), we use

a faster approximate MST algorithm that takes O(n logn) time—the same as Har-Peled. In Har-Peled’s data structure

we always merged two clusters, if the MST edge connecting them is smallest. The difference between hierarchical

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 957

clustering introduced here and that of Har-Peled’s is—here instead of trying to merge two nearest clusters, we merge

a number of the clusters in phases such that diameter of the new cluster generated is small (Section 4).

In an independent work, Arya and Malamatos [2] have also achieved a similar result based on the well separated

space decomposition of Callahan and Kosaraju [7]. Further, they obtain space-time trade-offs for generalization of

the Voronoi cells with more than one representative—this has been further improved by Arya at al. [3]. One possible

advantage of our method is that the number of balls generated in our algorithm is much less—O(n) as compared to

O((α
√

d)
d
n) and an alternate search structure (other than the BBD tree) may be able to exploit this.

2. A brief review of Har Peled’s construction

Har-Peled [11], proposes a solution based on the following observation:

Observation 2.1. Let the distance between two points A and B be |AB|. If a query point Q lies further than k · |AB|
from A and B , where k is set to 1/ε, then both A and B are ε-neighbors of Q, i.e.,

|QA|
|QB| < 1 + ǫ.

Har-Peled [11] further proposes a clustering method for clustering the points into a hierarchical tree. Consider the

connected components obtained by growing balls around all the points. We also construct a forest (called cluster tree)

from the connected component.

Initially we start out with just the set of points themselves. Thus we start with n connected components consist-

ing of the individual points. The corresponding forest consists of n trees with each tree consisting of a single leaf,

corresponding to a point.

We then grow the balls around all the points uniformly. When two components meet, we get a new component

that replaces the two components corresponding to the points whose balls meet and is a result of merging the two

components. In the corresponding forest, we merge the two trees corresponding to the components being merged by

hanging one of the trees on the other one arbitrarily (see Fig. 1).

At this point, we also associate a value of rloss(p) with the root, p of the tree that we hang on the other one. This

value corresponds to the radius of the balls when these components meet. It is actually half the distance between the

closest points of the two components.

Thus rloss(p) = radius of the ball at p, when p ceases to be root.

2.1. Properties of the cluster tree

• Values of rloss increase along a path towards the root.

• If Lmax is the longest edge of the MST, the tree edge corresponding to this is the last edge to be added.

Fig. 1. Constructing the cluster tree.

958 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

• If any query point q that is outside of the union of balls of radii Lmax.|P |.1/ǫ centered at p ∈ P , then any point

p is an ǫ-nearest neighbor of q , i.e., q is too far from P . Note that the diameter of P is bounded by Lmax.|P |.

The above properties also hold for any subtree (cluster) formed during the construction.

Har-Peled, instead of working with an exact MST in d-dimensions which takes O(n2) time to compute for large d ,

settles for an nd factor approximation that can be computed in O(n logn) time.

Using the nd-MST, he constructs an nd-stretch Hierarchical Clustering and then gives an algorithm for the con-

struction of a family of PLEBs (Point Location in Equal Balls) for answering the approximate nearest neighbor queries

in time O(log(n
ǫ
)). The search proceeds by pruning some of the clusters on the basis of some PLEBs and recursively

searching the remaining points. For each recursive call we have to construct O(logn) PLEBs and there are O(logn)

levels. Finally the O(n log2 n) balls are merged into a single search data structure (a compressed quadtree [1]). The

bound on the space depends on the number of balls generated by the family of PLEBs which is roughly O(n log2 n).

3. Improving the space bound

In this section we present a different perspective, whereby we decrease the number of balls required for answer-

ing approximate nearest neighbor queries by pruning overlapping and unwanted balls from the set of balls centered

around a point p ∈ P . We give an independent algorithm for the construction of balls around the points of P , such that

reporting the center of the smallest ball that contains a query point answers the approximate nearest neighbor query.

3.1. Building the nd-hierarchical clustering

The following definitions are similar to Har-Peled that have been restated for convenience of the reader.

Definition 3.1 (λ-MST). A tree T having the points of P in its nodes, is a λ-MST of P , if it is a spanning tree of P ,

having a value len(.) associated with each edge of T , such that for any edge e = uv of T , len(e) � d(P1,P2) �

λ len(e), where P1, P2 is the partition of P into two sets as induced by the two connected components of T -e, and

d(P1,P2) = minx∈P1,y∈P2 ‖xy‖ is the distance between P1 and P2.

One can compute a nd-MST of P in O(n logn) time. Har-Peled [11] shows how such an nd-MST can be con-

structed, and is similar to the fair-split tree construction of Callahan and Kosaraju [7].

Definition 3.2 (λ-Stretch hierarchical clustering). A Directed tree T storing the points of P in its nodes, so that for any

point p, there is a value rloss(p) associated with the out-edge emanating from p to its parent, satisfying the following

property:

If C1 denotes connected components obtained on constructing balls of radius r around all points, C2 denotes

connected components obtained on constructing balls of radius λr around all points, F is the forest obtained

by removing from T , all edges larger than r and X is the partition of P into subsets induced by the connected

components of the forest F , then C1 � X � C2, where X � Y ⇒ if A and B are in the same component in X, then

they are in the same component in Y .

The nd-stretch hierarchical clustering is built from the nd-MST as follows:

We sort the edges of the nd-MST in order of the len(.) values of the edges. We then traverse the list. In each

iteration, we take the next edge, say e = xy, from the sorted list and connect the two subtrees to which x and y

belong by hanging the smaller tree onto the larger one by introducing an edge between the roots of the two subtrees.

We associate with this edge e, the value rloss(e) = len(xy)/2.

For the root, t , of the tree, we assign rloss(t) = max(rloss(pi), where pi is a child of t).

Observation 3.1. The height of the tree formed in the λ-stretch hierarchical clustering of P is at most logn. (Hanging

the smaller tree below the larger one insures this property.)

We will use b(p, r) to denote the ball of radius r centered at p.

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 959

Definition 3.3 (rdeath, rlow, rhigh). For an approximation factor γ , define rdeath(p) = 6λrloss(p)n logn/γ and de-

fine rlow(p) = (1/(1 + γ /3))rloss(p). rlow(p) gives us a value just smaller than rloss(p), s.t., if a query point

q /∈ b(p, rlow(p)) but q ∈ b(p, rloss(p)), then p is a (1 + γ /3)-approximate NN of the query point. Also, define

rhigh(p) = (36λrloss(p)n logn/γ). Note that for any point p, rhigh(p) > rdeath(p).

Definition 3.4 (parent(p), parenti(p)). Define parent(p) to be the parent of node p in the tree obtained by the λ-stretch

hierarchical clustering of P . Define parenti(p) to be the ith parent of node p in the tree obtained by the λ-stretch

hierarchical clustering of P , i.e., parent0(p) = p and parenti(p) = parent(parent(i−1)(p)). Note that parenti(p) is

defined till it is the root of the tree obtained by the λ-stretch hierarchical clustering of P , and is not defined beyond

the root.

We will use Subtree(p) to denote the subtree rooted at p.

3.2. Construction of balls (algorithm ConstructBalls(P, γ))

In this section λ = nd . Given a λ-stretch hierarchical clustering of P , for each point p in P , let r0 be the rloss value

for p and let p1,p2, . . . , pm be the children of p in sorted order of their rloss values, i.e., rloss(p1) � rloss(p2) � · · · �
rloss(pm). Also, let x be the parent of p in the tree formed by the λ-stretch hierarchical clustering of P .

We construct the following ball sets around p:

(1) Balls with radius ri = rloss(p)(1 + γ /3)(j−1) for j = 0, . . . ,M − 1, where M = ⌈log(1+γ /3)(1 + γ /3)(rhigh(p)/

rloss(p))⌉.

This defines a ball set in the range [rlow(p), rhigh(p)].

(2) Balls with radius ri = rloss(pi)(1+γ /3)(j−1) for j = 0, . . . ,M −1, where M = ⌈log(1+γ /3) (1 + γ /3)(rhigh(pi)/

rloss(pi))⌉.

This defines a ball set in the range [rlow(pi), rhigh(pi)] ∀1 � i � m.

We also construct a universal ball (of infinite radius) centered at the point that is the root of the tree formed by the

λ-stretch hierarchical clustering of P , so that any point that is not in any of the balls constructed by the above rules

lies in this ball.

3.3. Correctly answering (1 + ǫ)-approximate NN queries

In this subsection we prove that reporting the center of the smallest ball that contains a query point from the set of

balls constructed by the algorithm ConstructBalls answers the approximate nearest neighbor query correctly.

Observation 3.2. ‖ab‖ � 2rloss(p) ∀a ∈ Subtree(p) and b /∈ Subtree(p) as 2rloss(p) is the minimum separation

between any point in the cluster from any point outside it by definition of rloss.

In order to limit the number of balls that we construct around a given point, we wish to determine the largest ball

such that for any query point beyond that we can claim the existence of another point which is a near neighbor of the

query point with a limited accumulated approximation error.

The following lemma establishes that rhigh(x) is a limit on the radius of the largest ball to be constructed around

the point x, so that if the query point does not lie in this ball, then parent(x) is a near neighbor of the query point

with some accumulated approximation error. Thus, we can ignore the point x at the expense of some accumulated

approximation error.

By the definition of rhigh(x), the accumulated error is a factor of 1 + γ /(3 logn). This value is so chosen that

repeated accumulation of approximation errors is bounded by a suitable value as we will see later.

960 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

Lemma 3.1. For any query point q , if x is a (1 + α)-NN of q in P , and if ‖qx‖ > rhigh(x), then parent(x) is a

((1 + γ /(3 logn))(1 + α))-NN of q in P .

Proof. The proof of this lemma is similar to the proof of Lemma 2.13 in [11].

Let z be parent of x in the λ-stretch hierarchical clustering of the set of points P . Note that ‖qx‖ >

rhigh(x) > rdeath(x). By the same argument as in Lemma 2.10 of [11], ‖zx‖ � 2nλrloss(x) = (γ /(3 logn))rdeath(x) <

(γ /(3 logn))‖qx‖. Therefore, ‖zq‖ � ‖qx‖ + ‖zx‖ � (1 + γ /(3 logn))‖qx‖ � (1 + γ /(3 logn))(1 + α)dP (q).

It follows that parent(x) is a ((1 + γ /(3 logn))(1 + α))-NN of q in P . ✷

In the following lemma, we show that it is possible to recursively consider the parent of the current candidate as

the next nearest neighbor candidate if the query point does not lie in the largest ball around the current candidate. Of

course, at every step that we shift the candidate to the parent, we accumulate an extra error in our approximation.

Lemma 3.2. Let p be the NN of a query point q in P . Let r be the radius of the smallest ball containing q and let it

be centered at x. If r > rhigh(parenti(p)) ∀0 � i � j − 1, then parentj (p) is a ((1 + γ /(3 logn))j -approximate NN

of q in P .

Proof. The proof is by induction on j using Lemma 3.1. ✷

In the following lemma, we now show that since we are constructing balls in a manner that every ball is larger

by a factor of 1 + γ /3 from the previously constructed ball, we may incur an additional approximation error factor

of 1 + γ /3 in reporting the nearest neighbor. That is, that if a point p is an approximate nearest-neighbor of a query

point q , such that q lies in one of the balls constructed in the ballset of p but we end up reporting another point x

because the ball containing q centered at x is smaller than the ball containing q centered at p, even though p is closer

(note that this is possible due to our construction of discrete set of balls), we only suffer an additional approximation

error factor of 1 + γ /3, i.e., by reporting x instead of p.

Lemma 3.3. For any query point q , if p is a (1 + α)-NN of q in P , and if there exists a ballset, centered at p, in

[rlow(t), rhigh(t)] for some point t , and if the smallest ball containing q has radius r , such that rloss(t) � r � rhigh(t)

and is centered at x, then x is a (1 + γ /3)(1 + α)-approximate NN of q in P .

Proof. If x = p, then we are done.

Suppose x �= p. Then two cases arise, either q /∈ B(p, rhigh(t)) or q ∈ B(p, rhigh(t)). We will show in either case

that dP (q) � ‖xq‖ � (1 + γ /3)(1 + α)dP (q).

Case I. q /∈ B(p, rhigh(t)).

In this case, ‖pq‖ > rhigh(t) � r > ‖xq‖. This implies that x is closer to q than p and therefore trivially ‖xq‖ <

(1 + γ /3)(1 + α)dP (q).

Case II. q ∈ B(p, rhigh(t)).

Clearly, q /∈ B(p, rlow(t)), because otherwise the smallest ball containing q would have radius � rlow(t) and

r � rloss(t) > rlow(t) leading to a contradiction that the smallest ball containing q has radius r . Hence, ∃j , such that

q ∈ B(p, rj) and q /∈ B(p, rj+1), where r0 = rlow(t), implying that rj < ‖pq‖ � rj+1 = (1 + γ /3)rj .

Therefore, ‖xq‖ � r � rj+1 = (1 + γ /3)rj < (1 + γ /3)‖pq‖ � (1 + γ /3)(1 + α)dP (q).

Thus x is a (1 + γ /3)(1 + α)-approximate NN of q in P . ✷

Suppose that the query point q is contained in the ball of radius rloss(p) for a point p. Then, clearly the nearest-

neighbor of the query point q can only lie amongst the points that belong to the cluster formed by the subtree of the

hierarchical clustering tree rooted at p. However, it still needs to be determined which of these points is closer, and p

itself is also a candidate. This calls for the construction of more balls around p of radii corresponding to the ballsets

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 961

constructed around the child nodes of p. This way we determine which of p and its children is closer to the query

point q . This is precisely the set of balls constructed by rule 2 in algorithm ConstructBalls. Note that we do not need

to construct balls around p corresponding to the children further down the hierarchy, as the child nodes of p would

then themselves be better candidates.

The following lemma shows that the construction of balls in algorithm ConstructBalls for the case described above

leads to answering the queries with only a further compounded approximation error of a factor of 1 + γ /3.

Lemma 3.4. For any query point q , if p is a (1 + α)-NN of q in P , and we have balls constructed around the points

of P as defined by ConstructBalls, and if the smallest ball containing q has radius r , such that r < rloss(p) and is

centered at x, then x is a (1 + γ /3)(1 + α)-approximate NN of q in P .

Proof. If q /∈ B(p, rloss(p)), then ‖pq‖ > rloss(p) > r � ‖xq‖ implying that x is closer to q than p and therefore

trivially ‖xq‖ � (1 + γ /3)(1 + α)dP (q).

Suppose q ∈ B(p, rloss(p)). Since q ∈ B(x, r) and q ∈ B(p, rloss(p)), these balls intersect. Then x ∈ Subtree(p)

because all balls of radius < rloss(p) centered around points /∈ Subtree(p) cannot intersect since ‖ab‖ � 2rloss(p)

∀a ∈ Subtree(p) and b /∈ Subtree(p). Let p1 be the child of p, such that x ∈ Subtree(p1). We consider three cases

based on the value of r .

Case I. r < rloss(p1).

We know that x ∈ Subtree(p1) and p /∈ Subtree(p1). Then ‖pq‖ > r , because otherwise ‖px‖ � ‖pq‖ + ‖qx‖ <

r + r = 2r � 2rloss(p1), and this would contradict Observation 3.2.

This implies that x is closer to q than p and therefore trivially ‖xq‖ � (1 + γ /3)(1 + α)dP (q).

Case II. r > rhigh(p1).

This case is not possible as we do not construct balls larger than rhigh(t) around any point t of P , and rhigh(t) �

rhigh(p1) ∀t ∈ Subtree(p1), but we know that there is a ball centered at x ∈ Subtree(p1) that contains q .

Case III. rloss(p1) � r � rhigh(p1).

Since there is a ballset around p in the interval [rlow(p1), rhigh(p1)], ∃j , such that q ∈ B(p, rj) and q /∈ B(p, rj+1),

where r0 = rlow(p1). This implies that ‖pq‖ > rj . It must be that r � rj+1, because otherwise B(p, rj+1) would be a

ball of radius smaller than r containing the query point q .

Therefore, ‖xq‖ � r � rj+1 = (1 + γ /3)rj < (1 + γ /3)‖pq‖ � (1 + γ /3)(1 + α)dP (q).

Thus in all valid cases, x is a (1 + γ /3)(1 + α)-approximate NN of q in P . ✷

In the following theorem, we combine the results of all the previous lemmas to show that the construction of balls

in algorithm ConstructBalls does answer the approximate nearest-neighbor queries correctly.

Theorem 3.1. For a point set P and an approximation factor ǫ, Let the smallest ball containing q , in the balls formed

by algorithm ConstructBalls(P, γ), where γ = ǫ/2, be of radius r , centered at x, then x is a (1 + ǫ)-approximate NN

of q in P .

Proof. Let p be the NN of q in P .

Case I. r < rhigh(p).

– rloss(p) � r � rhigh(p):

If rloss(p) � r � rhigh(p), then by the construction in algorithm ConstructBalls, since there exists a ballset in

[rlow(p), rhigh(p)], using Lemma 3.3, x is a (1 + γ /3)-NN of q in P .

962 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

– r < rloss(p):

If r < rloss(p), then using Lemma 3.4, x is a (1 + γ /3)-NN of q in P .

Case II. r > rhigh(parenti(p)) and r < rhigh(parent(i+1)(p)) for some i.

By Lemma 3.2, parenti+1(p) is a ((1 + γ /(3 logn))i+1-approximate NN of q in P .

– If rloss(parenti+1(p)) � r � rhigh(parenti+1(p)), then by the construction in algorithm ConstructBalls, since there

exists a ballset in [rlow(parenti+1(p)), rhigh(parenti+1(p))], centered at parenti+1(p). Using Lemma 3.3, x is a

((1 + γ /(3 logn))i+1(1 + γ /3)-approximate NN of q in P .

– If r < rloss(parenti+1(p)), then using Lemma 3.4, x is a ((1 + γ /(3 logn))i+1(1 + γ /3)-NN of q in P .

Also i + 1 � logn, since height of the tree formed by the λ-stretch hierarchical clustering of P is bound by logn.

Therefore x is a ((1 + γ /(3 logn))logn(1 + γ /3)-approximate NN of q in P .

Case III. r > rhigh(t), where t is the root of the tree formed by the λ-stretch hierarchical clustering of P .

There is no ball in P of radius > rhigh(p). Thus t is reported as the approximate-NN of q in P as q lies in the

universal ball centered at t .

By Lemma 3.2, t is ((1 +γ /(3 logn))i -approximate NN of q in P , where i � logn, since height of the tree formed

by the λ-stretch hierarchical clustering of P is bound by logn.

Therefore x is a ((1 + γ /(3 logn))logn(1 + γ /3)-approximate NN of q in P .

And as (1 + γ /3)(1 + γ /(3 logn))logn � 1 + 2γ , x is a (1 + 2γ)-approximate NN of q in P .

Hence x is a (1 + ǫ)-approximate NN of q in P . ✷

3.4. A bound on the total number of balls required

In the following theorem we analyze the number of balls that we construct in the algorithm ConstructBalls.

Theorem 3.2. The total number of balls constructed by the algorithm ConstructBalls(P, ǫ/2) is O((1/ǫ2)n log(n/ǫ)).

Proof. The number of balls in a ball set is O((1/ǫ) log1+O(ǫ)(n/ǫ)) = O((1/ǫ2) log(n/ǫ)).

For each point, one ballset is constructed for the point by rule 1 of algorithm ConstructBalls. Additionally, one ballset

is constructed for each child of the point by rule 2 of algorithm ConstructBalls. By charging the balls constructed

around the child nodes (using rule 2) by algorithm ConstructBalls to the respective child nodes, the charge incurred at

each point is at most that of 2 ball sets, i.e., O((1/ǫ2) log(n/ǫ)).

Therefore, the total charge incurred over the n points is O((1/ǫ2)n log(n/ǫ)). ✷

This improves the bound on the number of balls constructed in [11] by a factor of logn. These balls can be used to

construct cells, i.e., quadtree boxes, and then store them in a BBD-tree as described in [11] resulting in an improvement

of a factor of logn in space complexity and preprocessing time while keeping the query time logarithmic.

4. A linear space solution based on ε-PLSB and a new hierarchical clustering

In the previous section, we saw that the recursive structure of the Har-Peled’s [11] data structure can be removed

to yield an O(n log(n)) space. The extra log(n) factor is appearing because, around each point of the database, we

construct balls of radius between rloss(p), rloss(p) · (1 + ǫ), rloss(p) · (1 + ǫ)2, . . . , rdeath(p). Since, we have defined

rdeath(p) to be Ω(n/ε) times rloss(p), this contributes Ω(log(n)) for each point in the database. But, actually we

do not need rdeath(p) to be as high as that. We observe that rdeath is required to be the distance beyond which

any point of the subtree(p) is ε nearest neighbor of the query point q . An appropriate distance for that could be

O(diam(subtree(parent(p)))/ε), where diam denotes the diameter of a point set.

Unfortunately, even with this definition of rdeath, the number of balls generated could be O(n log(n)). To see that,

consider the example of n points (say p1,p2, . . . , pn) all lying a line such that dist(pi,pi+1) = 1 + ih, where h is

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 963

Fig. 2. Two different clustering for almost equidistant points in a line.

an infinitesimally small number. Clearly, the MST is a single chain. In this case, the number of balls generated by

algorithm in [11] (and its modification here) is Ω(n log(n)), even if we redefine rdeath as suggested. The problem

is that the algorithm in [11] disregards the edge-lengths of the approximate MST, except for their relative ordering

when constructing the hierarchical clustering. To solve that problem, we construct the hierarchical clustering in a

different manner. We also give importance to the magnitudes of the edge lengths of the MST in addition to the relative

ordering, namely, we do not distinguish between nearly equal edge lengths. Consequently, in the previous example

the hierarchical clustering may take different forms as in Fig. 2. The second one is clearly preferred (we shall return

to this example later).

4.1. ε-NNS and ε-PLSB

The problem that we address here is a related problem called Approximate Point Location in Smallest Ball

(ε-PLSB) which is an approximate version of Point Location in Smallest Ball (PLSB) problem. In defining ε-PLSB,

we take care of the following.

(1) The approximate version of PLSB can be solved by searching for cubes in a hierarchical grid as [11] (see Appen-

dix C).

(2) The approximate nearest neighbor searching problem is reducible to the ε-PLSB problem.

For this, we make use of another point q ′ which will ensure that the approximation factor 1 + ε is achieved from the

nearest neighbor of p. A point p is an ε-PLSB solution for a query point q , if there exists q ′ such that (i) p is a PLSB

solution for q ′ and (ii) q ′ is near q . The formal definitions follow.

Definition 4.1.

(1) PLSB. Given a set of points P , and a finite set Q ⊂ P × R, we want to build a data structure D, such that given

any query point q , we are able to return a pair (p, r) ∈ Q, such that b(p, r) is the smallest ball containing q . If

there is no such ball, then it should return NIL.

(2) ε-PLSB. Given a set of points P , and a finite set Q ⊂ P ×R, we want to build a data structure D, such that given

any query point q:

(i) If q ∈ b(p, r) for some (p, r) ∈ Q, then we must return a pair (p′, r ′) ∈ Q, such that r ′ � r and there exists

a point q ′ ∈ b(p′, r ′) such that dist(q, q ′) � r ′ε and b(p′, r ′) is the smallest ball containing q ′ among balls

from {b(p, r) | (p, r) ∈ Q} (p′ is solution to PLSB query for q ′).
(ii) If q is not contained in any ball from the set {b(p, r(1 + ε)) | (p, r) ∈ Q}, then we should return NIL.

(iii) Otherwise, we can return anything (even NIL).

964 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

Fig. 3. The reduction of ε-NNS to ε-PLSB—the intermediate steps illustrate the proof strategy.

Given a set of points P , we will construct a special set of balls B around points in P (cf. Definition 4.5), so that

the answer to ε-PLSB in B yields the approximate nearest neighbor in P . For that, we follow strategy described by

Fig. 3.

The first step in the reduction is accomplished by using a carefully constructed hierarchical clustering of the point

set P . The definition of our hierarchical clustering is actually quite generic. It is a binary tree with singleton subsets

of P (the input point set) as leaves. The internal nodes are denoted by the union of leaves of the sub-tree rooted at

that node. Given any such tree, we construct an instance I of ε-PLSB, such that any nearest neighbor query for the

point set P can be solved by solving the query q for I . For two sets X and Y , we denote minx∈X,y∈Y dist(x, y) by

dist(X,Y). Using this notation, we define the hierarchical clustering as follows.

Definition 4.2 (Hierarchical clustering). Given a point set P , its hierarchical clustering is a binary tree with singleton

subsets of P as leaves (each singleton subset of P appearing exactly once). The internal nodes are denoted by the

union of the leaves of the sub-tree rooted at them. Each node in the tree is thus a subset of P and is called a cluster.

Note that the root is the cluster P . Each internal node v of the tree is tagged with two values rmin(v) and rmax(v) with

the following properties.

(1) rmin values increase from leaves to root.

(2) rmin(v) �
1
2 dist(left(v), right(v)).

(3) rmax(v) � 8 diam(v)
ε

.

Definition 4.3. For every cluster v of T , we pick an arbitrary point p ∈ v and call it leader(v).

Definition 4.4 (BallRange(p, r1, r2)). It is defined to be the set of all balls centered at p of radius between r1 and r2.

BallRange(p, r1, r2) = {b(p, r)|r1 � r � r2}. Note that there are infinite number of balls in BallRange(p, r1, r2).

Definition 4.5 (BallSet(v)). For a cluster v of a hierarchical clustering T , we define BallSet(v) to be

• If v is leaf, then BallSet(v) = φ.

• Otherwise, BallSet(v) = BallSet(left(v)) ∪ BallSet(right(v)) ∪ Bl ∪ Br , where Bl = BallRange(leader(left(v)),

rmin(v), rmax(v)), Br = BallRange(leader(right(v)), rmin(v), rmax(v)).

Note that BallSet(v) is actually a union of 2|v| − 2 BallRanges.

Definition 4.6 (Inner ball versus outer ball). A ball is called an inner ball, if it is the smallest ball for one of the

BallRanges of BallSet(v). Otherwise, it is called an outer ball.

Observation 4.1. If b(p, r) ∈ BallSet(v) is an inner ball of BallSet(v), then r = rmin(u), for u ∈ Subtree(v) in the

hierarchical clustering of v.

Observation 4.2. Suppose, the ball b(p, r) is the smallest ball in BallSet(v) containing q . If b(p, r) is an outer ball,

then dist(q,p) = r .

4.2. Details of the reduction

Given a hierarchical clustering, we give the strategy of reduction from ε-NNS to ε-PLSB for an lp metric on Rd .

This process is hypothetically divided in three steps. In the first step, we generate an infinite set of balls P1, such that

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 965

result of PLSB query q to P1 is a ball, centered around an ε/7-nearest neighbor of q . In the next step, we generate a

finite set of balls P2 from P1, such that result of PLSB query q to P2 is a ball centered around 2ε/3-nearest neighbor

of q . Finally, we prove that the result of ε/7-PLSB query q to P2 is a ball centered around ε-nearest neighbor of q

in P .

4.2.1. Generating P1 (reduction to PLSB with infinite No. of balls)

Here we have to reduce ε/7-NNS to PLSB with infinite number of balls. For that, we prove that for any cluster v

of T , BallSet(v) is such a point set. The exact statement is the Theorem 4.1.

Theorem 4.1. For a cluster v of T , given a query point q , a point p ∈ v is ε/7 nearest neighbor of q among points

of v, if one of the following is true.

• If p is the center of the smallest ball in BallSet(v) containing q .

• There is no ball in BallSet(v) containing q .

Note that the second condition depends only on q , and so any arbitrary database point p is ε/7-nearest in that case.

Proof. We prove it by induction on the height of v in T . In the base case, v is a leaf, and BallSet(v) is empty. So, it

is trivially proved.

Now, in the induction step, we assume the result for left(v) and right(v), and prove it for v. Let p1 = leader(left(v))

and p2 = leader(right(v)). By definition, BallSet(v) = (BallSet(left(v)) ∪ Bl) ∪ (BallSet(right(v)) ∪ Br), where Bl

and Br are a set of balls around p1 and p2, respectively. Note that BallSet(left(v)) ∪ Bl = B1 (say) is a set of balls

with centers among points of left(v) and BallSet(right(v)) ∪ Br = B2 (say) is a set of balls with centers among points

of right(v). We consider three cases (exhaustive but not necessarily disjoint).

Case 1. Since, b(p1, rmax(v)) ∈ B1, so dist(q,p1) � rmax(v) � 8 diam(v)/ε. So, distance between q and p1 is large

compared to the diameter of v. It is easy to see that for any point p ∈ v, dist(q,p)
dist(q,v)

�
rmax(v)

rmax(v)−diam(v)
�

8
8−ε

� 1 + ε/7.

Case 2. There exists no ball in B2 containing q: Similar to Case 1.

Case 3. There exists a ball each in B1 and B2 containing q: Let, the smallest ball in B1 and B2 containing q be

b(p∗
1, r1) and b(p∗

2, r2), respectively. To handle this case, we use the Lemma 4.1 proved later.

Lemma 4.1. p∗
1 is an ε/7-nearest neighbor of q , among points of left(v), and p∗

2 is an ε/7-nearest neighbor of q ,

among points of right(v).

Now we consider the three sub-cases arising in Case 3. We have dist(q,p∗
1) � r1 and dist(q,p∗

2) � r2.

Case 3a. The ball b(p∗
1, r1) is an inner ball: In this case, from Observation 4.1, we have r1 = rmin(v

′) for some v′ ⊆ v.

Using this with the definition of rmin we get: dist(q,p∗
1) � r1 = rmin(v

′) � rmin(v) � 0.5 dist(left(v), right(v)). This

implies that dist(q, left(v)) � 0.5 dist(left(v), right(v)). But, dist(q, right(v)) � dist(left(v), right(v))−dist(q, left(v)).

Therefore, dist(q, right(v)) � 0.5 dist(left(v), right(v)) � dist(q, left(v)). So, dist(q, v) = dist(q, left(v)). Now,
dist(q,p∗

1)

dist(q,v)
= dist(q,p∗

1)

dist(q,left(v))
� 1 + ε/7. So, p∗

1 is an ε/7 nearest neighbor of q in v.

Also, any ball in B2 containing q must have a radius larger than dist(q, right(v)). But, dist(q, right(v)) �

0.5 dist(left(v), right(v)) � rmin(v
′) = r1. So, any ball in B2 containing q is larger than b(p∗

1, r1). So, we see that

the smallest ball containing q in BallSet(v) is centered around ε/7 nearest neighbor of q in v.

Case 3b. The ball b(p∗
2, r2) is an inner ball: Similar to Case 3a.

966 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

Case 3c. Both the balls b(p∗
2, r2) and b(p∗

2, r2) are outer balls: From Observation 4.2, we have r1 = dist(q,p∗
1) and

r2 = dist(q,p∗
2). Without loss of generality, r1 � r2. So, b(p∗

1, r1) is the smallest ball containing q , in B1 ∪ B2 =
BallSet(v).

Also,
dist(q,p∗

1)

dist(q,left(v))
� 1 + ε/7 and

dist(q,p∗
2)

dist(q,right(v))
� 1 + ε/7 from the Lemma 4.1. Since, p∗

1 is nearer to q than p∗
2 ,

therefore
dist(q,p∗

1)

dist(q,right(v))
� 1 + ε/7. Therefore

dist(q,p∗
1)

min(dist(q,left(v)),dist(q,right(v)))
� 1 + ε/7. This implies that p∗

1 is the ε/7

nearest neighbor of q in v. ✷

Now we give the proof of Lemma 4.1.

Proof. We shall prove the Lemma 4.1 only for B1. The proof for B2 is similar. We have B1 = BallSet(left(v)) ∪ Bl .

From induction hypothesis, if no ball in BallSet(left(v)) contains q , then all the points are ε/7-nearest neighbor

of q in left(v). If q is contained in a ball of BallSet(left(v)), then the smallest ball in BallSet(left(v)) contain-

ing q , is centered around an ε/7-nearest neighbor of q in left(v). Suppose b(p′, r ′) is the smallest ball containing

q in BallSet(left(v)). If this is also the smallest ball in B1, then we are done. Suppose it is otherwise. Then the

smallest ball in B1 is from Bl . Suppose, b(p1, r
′′) is the smallest ball in Bl (and hence in B1).

Case (i). b(p′, r ′) is an outer ball: In this case, dist(q,p′) = r ′. So, if the smaller ball is b(p1, r
′′), then dist(q,p1) �

r ′′ � r ′ = dist(q,p′). So, we choose a ball nearer than the ε/7-nearest neighbor. Clearly, that is also ε/7-nearest

neighbor.

Case (ii). b(p′, r ′) is an inner ball: In this case, r ′ is rmin(v
′) for some v′ ⊂ v. The smallest ball in Bl is of radius

rmin(v). So r ′′ � rmin(v) � rmin(v
′) = r ′. So, the b(p′, r ′) is a smaller ball, which is a contradiction. So, this proves

Lemma 4.1. ✷

4.2.2. Generating P2 from P1 (reduction to PLSB with finite No. of balls)

In this section, we show that we need to retain only a finite number of balls of P1. For that we consider each ball

range separately.

Theorem 4.2. Given a hierarchical clustering T = (V ,E) for a point set P , we can construct a set of

2
∑

v∈V

max

(

1, log1+ε

rmax(v)

rmin(v)

)

balls such that following is true for a PLSB constructed for them. Given a query point q , the point returned by PLSB

data structure is 1 + 2ε/5 nearest neighbor of q among points of P .

Proof. We start with BallSet(P). Recall that there are infinite number of balls. We shall retain a carefully selected

finite set from these. Recall that balls in the BallSet(P) can be expressed as union of 2|P |−2 BallRanges. We replace

each maximal BallRange(p, r1, r2) ⊂ BallSet(P) with

{

b(p, r)

∣

∣

∣
r = r1

(

1 +
ε

7

)k

∧ r � r2(1 + ε/7) ∧ k ∈ {0,1,2, . . .}
}

.

Let B be this finite set of balls. We will show that, a PLSB constructed for B returns a ball which is centered around

a (1 + ε/7)(1 + ε/7) (� (1 + 2ε/5)) nearest neighbor. This completes the proof of the theorem.

Suppose, q is a query point, for (ε/7)-PLSB of B . Suppose, b(p, r) is the smallest ball containing q among balls

of BallSet(P).

Case 1 (b(p, r) is an inner ball of BallSet(P)). From Theorem 4.1, we know, that p is an ε/7-nearest neighbor of q .

Also, we know that b(p, r) is contained in B(B contains all the inner balls of BallSet(P)). So, b(p, r) is the smallest

ball in B containing q , and p is an ε/7-nearest neighbor of q . Hence proved.

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 967

Case 2 (b(p, r) is an outer ball of BallSet(P)). In this case, we observe that there is a ball b(p, r ′) ∈ B , with r ′ at most

r(1 + ε/7) which contains q . So, the smallest ball in B containing q is of radius utmost r(1 + ε/7). So, the center of

the smallest ball in B containing q is at a distance of at most r(1 + ε/7) from q , which is (1 + ε/7)2 dist(q,P). ✷

4.2.3. Reduction to ε/7-PLSB with finite No. of balls

Theorem 4.3. Given a hierarchical clustering T = (V ,E) for a point set P , we can construct a set of

2
∑

v∈V

max

(

1, log1+ε

rmax(v)

rmin(v)

)

balls such that following is true for an ε/7-PLSB constructed for it. Given a query point q , the point returned by

ε/7-PLSB data structure is 1 + ε nearest neighbor of q among points of P .

Proof. We use the same finite set of balls B as used in Theorem 4.2, and show that an ε/7-PLSB made for it satisfies

the above condition. Suppose, b(p, r) is the ball returned by the ε/7-PLSB data structure for B .

Case 1 (q ∈ b(p, r)). From definition of ε/7-PLSB, we get that b(p, r) is the smallest ball in B containing q . Using

Theorem 4.2, we get that p is (1 + ε/7)2 nearest neighbor of q .

Case 2 (q /∈ b(p, r)). In this case, we observe from the definition of ε/7-PLSB, that there exists a query point q ′, such

that dist(q, q ′) � εr/7 and b(p, r) is the smallest ball in B containing q ′. Using this with Theorem 4.2, dist(q,P) +
dist(q, q ′) � dist(q ′,p)/(1 + ε/7)2. This implies dist(q,P) � dist(q ′,p)/(1 + ε/7)2 − εr/7. Simplifying, we get

dist(q,P) � dist(q ′,p)(1 + ε). So, p is a ε nearest neighbor of q . ✷

B is composed of ball ranges, two for each cluster. Number of balls in ballranges corresponding to cluster v is

2 max(1, log1+ε
rmax(v)
rmin(v)

). So, we need at most 2
∑

v∈V max(1, log1+ε
rmax(v)
rmin(v)

) balls.

4.3. Some observations on MST based hierarchical clustering

Given a point set P , we want to construct a hierarchical clustering such that

2
∑

v∈V

max

(

1, log1+ε

rmax(v)

rmin(v)

)

= O
(

|P | log1+ε (1/ε)
)

.

The procedure to construct such a hierarchical clustering is quite involved. We shall first describe a simpler hierar-

chical clustering which achieves O(|P | log1+ε(|P |/ε)) bound. Then we describe methods for improving it to obtain

O(|P | log1+ε(1/ε)) bound.

The first hierarchical clustering that we describe is directly based on the MST of the point set. Suppose, the MST

of the point set P is M = (P,E′
M). Then we construct the hierarchical clustering as follows: The longest edge in E′

M

divides P into two parts, say P1 and P2. We find the hierarchical clusterings of P1 and P2 recursively, say C1 and C2.

The MST hierarchical clustering of P , then, has P as root and C1 and C2 as two children of the root.

Suppose, v is a cluster in the MST hierarchical clustering. We use

rmin(v) =
1

2
dist

(

left(v), right(v)
)

and

rmax(v) = 8 diam(v)/ε.

Consider any two points p1,p2 ∈ v. Consider the path connecting p1 and p2 in the MST. Suppose, e1, e2, . . . , el

are the edges in the path. Then by repeated application of triangle inequality, we get dist(p1,p2) � len(e1)+ len(e2)+
· · · + len(el). Since, l is at most n and len(ei) � dist(left(v), right(v)) (because dist(left(v), right(v)) is the length of

the largest edge in MST over v). Therefore, for any p1,p2 ∈ v we have dist(p1,p2) � ndist(left(v), right(v)). So,

diameter of v is at most ndist(left(v), right(v)). Thus,

rmax(v) � 8ndist
(

left(v), right(v)
)

/ε.

968 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

So,

rmax(v)

rmin(v)
= O(n/ε).

Thus

2
∑

v∈V

max

(

1, log
rmax(v)

rmin(v)

)

= O
(

|P | log1+ε

(

|P |/ε
))

.

The problems with MST hierarchical clustering are the following:

(1) The preprocessing involves construction of the MST, which requires nearly quadratic time.

(2) The preprocessing involves finding diameters of point sets which is computationally expensive.

(3) The space requirement is not linear but n logn.

To handle the first problem, we use approximate MSTs. To handle the second problem, we use alternative definitions

of rmax(v). With regards to the third problem, let us look at some examples before we propose our solution in the next

subsection.

For the existing MST hierarchical clustering, the space requirement is Ω(|P | log(|P |)) in the worst case. For

example, consider a set of n points in a straight line, p1,p2, . . . , pn, with dist(pi,pi+1) = 1 + ih. Here h is an

infinitesimally small quantity. In this case, the MST is a line graph (Fig. 2) and in this case

∑

p

log
rmax(p)

rmin(p)
= O(log 1 + log 2 + · · · + logn) = Ω(n logn).

For the case where the edge lengths are growing geometrically, say, 2i , for i = 1,2, . . . , the MST hierarchical clus-

tering is actually linear.

4.4. An alternate hierarchical clustering

For exposition, we describe a linear space solution for points in a line case (i.e. one-dimensional case).

In the previous example, let us use the observation that all the edges in the MST are almost equal and ignore the

strict ordering. Using this idea, we construct the hierarchical clustering as in Fig. 2 (the second clustering), in form of

a fully balanced tree. In this case,

∑

v

log
rmax(v)

rmin(v)
= O

(

n

2
log 2 +

n

4
log 4 + · · · + logn

)

= O(n).

The main idea in our solution is to partition the edges of this MST into sets, such that all the edges within a set

have lengths within factor of two of each other. While constructing the hierarchical clustering from the approx MST,

all the edges within a single partition are considered as if of same length. In the usual MST hierarchical clustering,

we sort the edges according to their lengths, and keep on merging clusters connected by the edges, considering the

edges in increasing order of their length. Here, we will reorder the merging sequence. For the general d-dimensional

clustering, this reordering is much more involved. However, for one dimension, we present a simpler strategy.

Let T = (P,EM) be the MST for P . We partition EM , into {Ek | k ∈ Z}, where Ek = {e ∈ EM | 2k �

len(e) < 2k+1}. Suppose Ek1 ,Ek2 , . . . ,Ekl
, are the set of all non-empty Eki

’s with ki < ki+1 (Fig. 4). We consider

all edges in each Eki
as being of effectively the same length and try to keep the clustering more balanced. Suppose

the clusters c0, c1, c2, . . . , ck−1 are to be merged into one due to edges in Eki
. Then, these clusters would form a

contiguous interval on the real line (follows from the fact that the MST is a line graph). Without loss of generality, we

assume that the order c0, c1, c2, . . . , ck−1 is same as that appears on the real line. Then we form any height balanced

binary tree with c0, c1, . . . , ck−1 as leaves in order. The merge is done according to the natural order suggested by this

tree. For this clustering, the rmin(v) for any cluster v created in phase i is equal to 2ki−1.

4.4.1. Proof for points in a line case

The result that the generated clustering is linear follows from following two observations.

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 969

Fig. 4. Linear Hierarchical clustering for points in a line.

(1) If Wi is the set of clusters that we add when we consider edges in Eki
(so-called phase i), then

∑

v∈Wi

log
rmax(v)

rmin(v)
= O

(

∑

e∈Ek1
∪Ek2

∪···∪Eki

len(e)

2ki

)

.

This result requires some technical details that we provide for the general d-dimensional case.

(2) The size of hierarchical clustering is linear. This follows by observing that in the previous result, if we add the

contribution of each edge e ∈ Eki
to the total sum across all phases, we obtain O(len(e)

∑∞
j=i(

1

2ki
)) = O(1) as

len(e) = O(2ki). Since there are O(|P |) edges in the MST, the total sum is (O(|P |)).

4.5. Constructing the general hierarchical clustering

As in the [11], we use a λ-MST instead of an exact MST.

The central idea in our solution is to partition the edges of a λ-MST into sets, such that all the edges within a set

have lengths within a factor of two of each other (actually any constant factor would work). While constructing the

hierarchical clustering from the approximate MST, all the edges within a single set are considered as if of same length.

Let T = (P,EM) be a λ-MST for P . We partition EM , into {Ek | k ∈ Z}, where Ek = {e ∈ EM | 2k �

len(e) < 2k+1}. Suppose Ek1,Ek2 , . . . ,Ekl
, be the set of all non-empty Ek’s with ki < ki+1.

Recall that a hierarchical clustering is a labeled tree with the vertex set as a subset of power set of P . We construct

the hierarchical clustering bottom up in l phases (l is the number of non-empty Ei ’s). In any phase i, we start with a

forest1 Fi . We initialize with the singletons i.e. F1 = ({{p} | p ∈ P }, φ). Then, we iteratively merge the trees of F by

creating new clusters in the forest, until we finally get a hierarchical clustering for P . By merging of two trees with

roots v1 and v2, we mean adding a new cluster v1 ∪ v2, with v1 and v2 as its two children. For merging more than two

trees, we mean to keep on doing the binary merge until they become part of a single tree. Fi is the forest at the start

of phase i. So, F1 = ({{p} | p ∈ P }, φ). We maintain the invariant that, C is a root of a tree in Fi iff C is a maximal

connected component of (P,Ek1 ∪ Ek2 ∪ · · · ∪ Eki−1).

For any cluster v added in phase i, we assign

rmin(v) =
2ki

2λ
.

Observation 4.3.

(1) rmin values increase from leaves to root. This is because, vertices added in later phases (which have larger rmin

values) are always “above” the vertices in earlier phases, in the hierarchical clustering.

(2) rmin(v) �
1
2 dist(left(v), right(v)). The proof is as follows. First observe that, the λ-MST edge going across any

two maximal connected components of (P,Ek1 ∪ Ek2 ∪ · · · ∪ Eki−1) is of length at least 2ki . So, the distance

1 A forest is a graph, which can be expressed as a union of vertex-disjoint trees.

970 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

between those components is at least 2ki

λ
. Since, children of any cluster added in phase i is also a union of

maximal connected components of (P,Ek1 ∪Ek2 ∪ · · · ∪Eki−1), the distance between them is also lower bounded

by 2ki

λ
.

Definition 4.7 (PathT (p1,p2)). Given a λ-MST T , we define PathT (p1,p2) for two points p1 and p2 as the set of

edges on the unique path on T connecting p1 and p2.

Definition 4.8 (S(v)). Given a λ-MST T , for a v ⊆ P , we define

S(v) =
⋃

p1,p2∈v

PathT (p1,p2).

Note that if v spans2 a connected component in T , then S(v) is simply the set of edges in T , which go across vertices

of v.

Definition 4.9 (S(v)). We define S(v) to be sum of lengths of all the edges in S(v).

In our hierarchical clustering, we shall use

rmax(v) = 8
S(v)

ε
.

Observation 4.4.

diam(v) � S(v).

The proof is a simple application of triangle inequality along the path joining the two most distant points in v.

From Observations 4.4 and 4.3, we conclude that the rmin and rmax values are well defined (consistent with the

definition of the hierarchical clustering).

In what follows, we let α = log1+ε(
λ
ε
).

Theorem 4.4. Given a point set P and a λ-MST (say T) of P , there exists a hierarchical clustering of P , with set of

clusters V such that 2
∑

v∈V max(1, log1+ε
rmax(v)
rmin(v)

) = O(α|P |). Further, this clustering can be done in O(n log(n))

time.

Proof. The proof of this theorem is based on the following lemma.

Lemma 4.2. If Wi is the set of clusters that we add in phase i, then

∑

v∈Wi

log1+ε

rmax(v)

rmin(v)
= O

(

α ×
∑

(p1,p2)∈Ek1
∪Ek2

∪···∪Eki

dist(p1,p2)

2ki

)

and the time taken in phase i is O(|Wi | log(n)).

Using Lemma 4.2, we count the contribution of each edge of the λ-MST. Suppose, e ∈ Eki
. Then, it does not

contribute anything up to phase i − 1. In any phase j � i, it contributes α len(e)/2kj . So, total contribution is at most

α len(e)
∑∞

j=i(1/2kj) � 2α len(e)/2ki . Also, since e ∈ Eki
, so len(e) � 2ki+1. Therefore, the contribution of each

edge is at most 4α and the total is O(α(number of edges in λ-MST)), which is clearly = O(α|P |).
As for the total time taken, time taken in phase i is upper bounded by |Wi | log(n). Since, we add a total of

∑

i |Wi | =
n − 1 clusters, so total time taken is O(n log(n)).

This completes the proof of Theorem 4.4. ✷

2 Spans as in a spanning tree. A vertex set S spans a connected component in a graph G = (V ,E) if the graph G′ = (S,E ∩ (S2)) is a connected

graph.

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 971

4.6. Merging within phase i—Lemma 4.2

In this section we prove Lemma 4.2, using a series of intermediate results. We start by giving a graph theoretic

result.

Lemma 4.3. Given a tree T and k of its vertices {v1, v2, . . . , vk} (possibly repeated), we can pair them up (if odd,

1 vertex would be left out) as {(vi1, vj1), . . . , (vik/2 , vjk/2)}, so that the set of paths from vil to vjl
are all edge disjoint

in T .

Furthermore, the tree T can be preprocessed in time O(n logn), such that once that is done, the pairing up of any

given k vertices can be done in O(k logn) time.

Proof. We prove it by induction on the number of nodes in the tree. The base case is simple. In induction step, pick

any leaf, say v of the tree T .

Case 1 (v is not among the vertices to be paired). Remove it from the tree and use the induction hypothesis to pair all

the vertices.

Case 2 (v is among the vertices to be paired). Then v must be connected to some other vertex in T . Let it be u.

If u is also to be paired, then pair u and v and pair the rest of the vertices using induction hypothesis (hypothesis

can be used after removing v and reversing the selection of u in T).

If u is not to be paired then invoke the induction hypothesis, with v removed and u selected. Then, every vertex

would get paired up with some vertex in T . Suppose, u is paired with w. Then, pair v with w and retain the rest of the

pairings. It is easy to see that all the paths are edge-disjoint.

Using the above strategy, we will design an algorithm to pair k vertices in O(n) time. However, we need an

algorithm which does this pairing in O(k log(n)) time, with permitted preprocessing time of O(n log(n)). Here is an

overview of the construction—the details are not difficult to work out. As a preprocessing step, construct a balanced

edge separator tree for the approximate MST. This can be done in O(n logn) time. Then to solve a pairing problem

for k input points, we split the k points into two parts according to the side of the separator tree, each of them lies in.

Then, we recursively pair the two parts, using the subtree they are associated with. Finally, two partial solutions are

combined by pairing up unpaired vertex in the left half (if any) with an unpaired vertex in the right half (if any). The

query time obtained is O(k log(n)). ✷

We give some additional definitions.

Definition 4.10.

(1) Gi is defined to be a sub-graph of the λ-MST of the point set P with vertex set P and edge set Ek1 ∪ Ek2 ∪ · · · ∪
Eki−1 . Note that it is a forest.

(2) Ci is defined to be the set of connected components of Gi .

(3) Hi is a forest over the connected components of Gi formed by edges in Eki
. Its vertex set is Ci . The edge set is

{(cs, ct) | ∃(ps,pt) ∈ Eki
, ps ∈ cs, pt ∈ ct }.

Observation 4.5.

Ci = The set of all the roots of the rooted forest Fi .

This follows from the discussion in Section 4.5.

We shall use the Lemma 4.3 to merge the clusters in the form of what we call a star. The definition of a star follows.

Definition 4.11 (Star). A set of clusters c0, c1, . . . , ck is called a star of the phase i with c0 as center, if they satisfy

the following conditions.

972 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

• c0 spans a connected component in Gi+1.

• For each j ∈ {1,2, . . . , k}, c0 ∪ cj spans a connected component in Gi+1.

c0 is called the center of the star and c1, c2, . . . , ck are called the leaves of the star.

4.6.1. Merging of a star

For simplicity, we assume that number of leaves of the star is a power of two. First we make the following claim.

Lemma 4.4. Given a star with center c0 and leaves c1, c2, . . . , ck we can pair each of c1, c2, . . . , ck into k/2 pairs,

say, (c1, c2), . . . , (ck−1, ck), such that

k/2
∑

j=1

S(c2j−1 ∪ c2j) �

k
∑

j=0

S(cj) + k2ki+1.

Time taken for the pairing is O(k log(n)).

Proof. From the definition of the star, c0 ∪ ck spans a connected component in Gi+1. So, there exists an edge in
⋃i+1

j=1 Ekj
, which connects c0 to ck . Suppose, for each cl , (vl, v

′
l) be the edge connecting c0 to cl with vl ∈ c0 and

v′
l ∈ cl .

Observation 4.6.

S(cm ∪ cn) � S(cm) + S(cn) + PathLength
(

v′
m, v′

n

)

,

where PathLength(vm, vn) is the length of the path between vm and vn in the λ-MST.

Observation 4.7.

PathLength
(

v′
m, v′

n

)

� PathLength(vm, vn) + 2 × 2ki .

This follows from the fact that both the edges (v′
m, vm) and (v′

n, vn), which appear at the two ends of the path from

v′
m to v′

n, are of length at most 2ki .

Since, c0 spans a connected component in Gi+1, which is a sub-graph of the λ-MST, so c0 spans a tree in Gi+1.

Each of vl is contained in c0. Use Lemma 4.3 to pair each vl , using the tree spanned by c0 in Gi+1. Without losing

generality, we assume that the pairing is (v1, v2), (v3, v4), . . . , (vk−1, vk). Then, since the paths are edge-disjoint, we

get the following result:

k/2
∑

j=1

PathLength(v2j−1, v2j) � S(c0).

Using Observations 4.6 and 4.7, we obtain

k/2
∑

j=1

S(c2j−1 ∪ c2j) �

k
∑

j=1

S(cj) + S(c0) + k2ki+1.

Also, from Lemma 4.3, time taken in pairing vi ’s is O(k logn). This is the time taken in pairing ci ’s as well. This

proves Lemma 4.4. ✷

Armed with Lemma 4.4, we now describe the procedure to merge a star. We use the following procedure to merge

the leaves of the star.

Merge-Star({c0, c1, c2, . . . , ck}). The procedure works in iterations. In each iteration, we try to merge a star. At the

end of each iteration, we are left with a star with lesser (roughly half) number of leaves than we had at the beginning

of the iteration. The center of the stars in each iteration remains c0.

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 973

Let s1, s2, . . . , sk′ be the leaves of the star to be merged in the current iteration. Here k′ is initialized with k, and

si ’s are initialized with ci ’s.

• If (k′ = 1), then merge the only leaf with the center of the star and exit.

• Use Lemma 4.4 to pair up the leaves of the star. Without loss of generality, the pairing is (s1, s2), . . . , (sk′−1, s
′
k).

• Merge the clusters in a pair.

• Repeat the procedure with

k′ ← k′/2

and

{s1, s2, . . . , } ← {s1 ∪ s2, s3 ∪ s4, . . .}.
(Note that this is again a star.)

Lemma 4.5. A star of phase i with c0 as center and c1, c2, . . . , ck as leaves can be merged by adding a set of

clusters W , such that

∑

v∈W

log
S(v)

2ki
= O

(

k + k log

(

S(c0)

k2ki
+

k
∑

j=1

S(cj)

k2ki

))

.

Also, the time taken in the merging of the star is O(|W | logn).

The proof is described in Appendix A.

4.6.2. Merging of a connected component of Hi

Now that we know how to merge a star, we describe how to merge a connected component of Hi . Let that compo-

nent be C. Let D =
⋃

c∈C c where c is a star. In the following procedure to merge the components, A denotes the set

of clusters yet to be merged. It is initially assigned the value C.

Merge-Component.

• If |A| = 1, then there is nothing to be done.

• Define T ′ to be a tree, with vertex set A and edge set as {(c1, c2) | c1, c2 ∈ A ∧ ∃(u1, u2) ∈ Gi+1, u1 ∈ c1,

u2 ∈ c2}. (Note that this graph is always a tree.)

• Find a minimum vertex cover V of T ′. Note that the smallest vertex cover of a tree has size at most half the size

of the tree |V| � 1
2 |A|.

• For each cluster c0 ∈ V , we have a set of clusters {c1, c2, . . . , ck} ⊂ A\V , directly connected to it (in other words

covered by it).

Observation 4.8. c0, c1, . . . , ck form a star with c0 as center and c1, c2, . . . , ck as leaves.

Use the vertex cover V to partition A into stars. Since, each star is centered around a vertex of the vertex cover,

the number of stars is |V|.

• Merge the stars using the procedure referred to in Lemma 4.5. After the merging, number of components left is

|V| � |A|/2. So, we have reduced the number of components from |A| to at most |A|/2.

• Repeat the procedure with A replaced by set of merged stars.

Lemma 4.6. It is possible to merge a connected component C of Hi by adding a set of clusters W , such that

∑

v∈W

log1+ε

rmax(v)

rmin(v)
= O

(

α ×
S(

⋃

c∈C c)

2ki

)

.

Time taken is O(|W | log(n)).

974 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

The proof is described in Appendix A.

The proof of Lemma 4.2 follows by using the bound of Lemma 4.6 on each of the connected components of Hi

and then adding the contributions. This completes the proof of Lemma 4.2. ✷

Appendix A

Proof of Lemma 4.5. Since in each iteration of the merge-star procedure, the number of leafs decreases by a factor

of two, so in the iteration t , k′ = k
2t .

Observation A.1. In the t th iteration,

k′ =
k

2t
.

Also from the Lemma 4.4, in each iteration, the sum of the rmax values of clusters increase by at most S(c0) +
k2ki+1. So, we get the following observation.

Observation A.2. In the t th iteration,

k′
∑

j=1

S(sj) �

k
∑

j=1

S(cj) + t
(

S(c0) + k2ki+1
)

.

Observation A.3. Time taken in the t th iteration is O(k
2t log(n)). This follows, from the fact that, in the merging

algorithm, pairing up of the clusters takes O(k′ log(n)) time and merging takes O(k′) time. Since, in the t th iteration,

k′ � 2k/2t , so the time taken is O(k
2t log(n)).

Now, the contribution of set of clusters that are added in the t th iteration is given by

k′/2
∑

j=1

log
S(s2j−1 ∪ s2j)

2ki
.

Using weighted Geometric mean � weighted arithmetic mean,

k′/2
∑

j=1

log
S(s2j−1 ∪ s2j)

2ki
�

1

2
k′ log

(

k′/2
∑

j=1

S
(

s2j−1 ∪ s2j

)

k′2ki

)

.

Using Observations A.1 and A.2, we get for the t th iteration

k′/2
∑

j=1

log
S(s2j−1 ∪ s2j)

2ki
�

k

2t−1
log

(

2t

∑k
j=1 S(cj) + tS(c0) + t2ki+1

2ki k

)

.

So the total contribution is

∑

t

k

2t−1
log

(

2t

∑k
j=1 S(cj) + tS(c0) + t2ki+1

2ki k

)

.

It is easily shown that this is

O

(

k + k log

(

S(c0)

k2ki
+

k
∑

j=1

S(cj)

k2ki

))

.

Also, adding time taken in each iteration from Observation A.3, we find the total time taken to be O(k logn). This

proves the Lemma 4.5. ✷

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 975

Proof of Lemma 4.6. Consider any iteration of the procedure. Suppose, crs is the sth cluster of the r th star of A.

Suppose, hr is the number of clusters in the r th star.

Then, from Observations 4.4 and 4.3 and Lemma 4.5, we get—we can merge all the stars created in this iteration

by adding a set of clusters W , with

∑

v∈W

log1+ε

rmax(v)

rmin(v)
= O

(

α
∑

v∈W

log
S(v)

2ki

)

= O

(

α
∑

r

(

hr + hr log

(

hr
∑

s=0

S(crs)

hr2ki

)))

.

From (geometric mean � arithmetic mean), we get

∑

v∈W

log1+ε

rmax(v)

rmin(v)
= O

(

α

(

∑

r

hr +
(

∑

r

hr

)

log

(
∑

rs S(crs)

2ki
∑

r hr

)))

.

Clearly,
∑

rs S(crs) � S(D), and
∑

r hr = |A|. So, this gives

∑

v∈W

log1+ε

rmax(v)

rmin(v)
= O

(

α

(

|A| + |A| log

(

S(D)

2ki |A|

)))

.

Now, in each iteration |A| reduces by at least a factor of two. Initially, it is |C|. So, the total contribution from all

the clusters added in all the iterations is

O

(

α|C|
(

1 +
1

2
+

1

4
+ · · ·

)(

1 + log

(

S(D)

2ki |C|

))

+ α|C|
(

1 +
log 2

2
+

log 4

4
+ · · ·

))

= O

(

α

(

|C| + |C| log

(

S(D)

2ki |C|

)))

.

Now, in the sub-graph spanned by D, there are |C| − 1 edges of length between 2ki and 2ki+1. So, from definition

of S(D), |C| � S(D)

2ki
. Also, |C| log(

S(D)

2ki |C|) is O(
S(D)

2ki
). So, total contribution is O(αS(D)/2ki).

The time taken in kth iteration is easily seen to be |A| log(n) (using Lemma 4.5). Since, in the kth iteration, |A| �
|C|/2k , so total time taken in all the iterations is O(|C| log(n) + |C| log(n)/2 + |C| log(n)/4 + · · ·) = O(|C| log(n)).

This proves Lemma 4.6. ✷

Appendix B. Constructing an approximate MST

Har-Peled described two algorithms for computing approximate MSTs. One takes Od(n log(n) + n
δd) time to con-

struct a 1 + δ-MST. It uses the Callahan Kossaraju’s Well Separated Pair Decomposition. He also gives an algorithm

which takes O(n log(n)) time to construct an nd-MST. We can use the first algorithm to construct a 2-MST for our

purposes.

Alternatively, we can construct a λ-MST using the techniques of this paper, without using WSPD. The procedure

is as follows.

(1) Construct nd-MST T1 of P using the technique of Har-Peled. Note that this does not use WSPD.

(2) Using techniques of this paper and T1, construct an approximate Voronoi Diagram V with approximation of ε = μ.

This would take O(n logn) space.

(3) Given a Voronoi Diagram (or approximate Voronoi Diagram), we define its Delaunay graph as a graph over sites

of the diagram, with edges between points p1 and p2 if and only if cells of p1 and p2 share a boundary. Construct

the Delaunay graph G of V .

(4) The MST of G is an 1 + 3μ-MST of the point set P .

The proof is based on the fact that approximate Delaunay graph contains an approximate MST. This can be con-

trasted with a similar result in the case of exact MST and Delaunay graph. We shall prove it by proving that

given any cut (P1,P2) in P , there exists an edge (p′
1,p

′
2) in the Delaunay graph such that dist(p′

1,p
′
2) is at-most

(1 + 3μ)dist(P1,P2).

976 Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977

Fig. 5. A cut in an approximate MST.

Proof. Suppose, p1,p2 be the points such that pi ∈ Pi and dist(p1,p2) = dist(P1,P2). Consider the ball b(C, r) with

p1,p2 as diameter (Fig. 5). It is easy to show that no point of P is contained in b(C, r). Consider all the Voronoi cells

that intersect the ball b(C, εr). Observe that those cells cannot all correspond to one of Pi . So, there is a point (say

q ′) in b(C, εr) which lies at the boundary of two Voronoi cells, one of them corresponding to a point in P1 and other

to a point in P2. Let these points be p′
1 and p′

2. So, both p′
1 and p′

2 are ε-nearest neighbor’s of q ′. So, dist(q ′,p′
i) �

(1 + ε)dist(q ′,pi). Using this and from geometry, we get dist(p′
1,p

′
2) � dist(p′

1, q
′) + dist(p′

2, q
′) �

(1 + ε)(dist(p1, q
′) + dist(p2, q

′)) � (1 + ε)(r + rε + r + rε) � (1 + ε)2 dist(P1,P2) � (1 + 3ε)dist(P1,P2). Since

there is an edge in the Delaunay graph between p′
1 andp′

2, the result follows. ✷

Appendix C. Hierarchical clustering for construction of PLSBs

Our techniques for the construction of PLSBs, like that of Har-Peled [11], are based on a hierarchical clustering

of the point set. These methods primarily differ in the way the hierarchical clustering is constructed, however the

underlying ideas are similar. We start with the individual points forming the leaves of the hierarchical clustering. In

each step two clusters are merged on the basis of some measure of “proximity” between the clusters. A set of balls

is constructed around a representative from each of these clusters. These balls are used to determine which cluster

contains a point that is approximately closer to the query point. This is determined by the representative around which

the ball containing the query point is constructed. When the query point is sufficiently far from both the clusters,

then a point from either cluster can be reported and therefore there is no need to construct more balls to distinguish

between the proximity of the query point from the points belonging to these clusters. This process is repeated until all

the points are merged into a single cluster.

The set of all the balls constructed in this manner constitute the balls of the PLSB problem.

C.1. Answering PLSB using compressed quadtree

Har-Peled [11] described an efficient data structure for answering a PLSB problem by first approximating the

balls with axis-parallel cubes extracted from a carefully constructed hierarchical grid and then constructing a quadtree

search tree over these cubes. We give below an outline of the data structure.

Consider a set B of m balls, constituting a PLSB problem. We wish to construct a data structure over B, that given

a query point q , reports the smallest ball containing q efficiently. This is done by approximating the balls by a set of

cubes from a hierarchical grid (Fig. 6).

For a real number u, let G(u) be the partition of ℜd into a uniform axis parallel grid centered at the origin, where

the side-length of the grid is 2⌊logu⌋. By varying the value of u, we get a multi-resolution grid that covers space.

Now consider a ball b = B(p, r) centered at p of radius r . Let GC(b, ε) be the set of cubes of the grid G(r/εd)

that intersects b. Let bε =
⋃

c∈GC(b,ε) c. Then,

• bε is an ε-approximation to b; and

• |GC(b, ε)| = O(1/εd).

Now consider B. Using the technique described above, one can derive a set GC(B, ε) =
⋃

b∈B GC(b, ε)

of O(m/εd) cubes from the axis-parallel hierarchical grid that ε-approximates B. There is also one “infinite” cube,

Y. Sabharwal et al. / Journal of Computer and System Sciences 72 (2006) 955–977 977

Fig. 6. ε-PLSB data structure.

that covers the whole space. This is a background cube that serves for answering ε approximate nearest neighbor

queries when the query point is so far from P , that any point x ∈ P is an ε-nearest neighbor to the query point.

Note that wherever there is an overlap of cubes from different balls, priority is always given to the smaller cube,

i.e., the cube corresponding to the smaller ball.

Let C be the set of all the cubes generated. Since all the cubes are taken from a hierarchical grid representation

of ℜd , these cubes can be stored in a quadtree, Q, and the quadtree can be used to answer point-location queries

among the prioritized cubes. The compressed quadtree contains regions that are either axis parallel cubes or the

annulus (difference) of two cubes, one contained inside another. The regions are disjoint and provide a covering of

space. Furthermore, each region is associated with the ball it corresponds to. In case of overlap, the region is associated

with the smallest ball. Using standard techniques [1], Q can be computed in time O(|C| log |C|). The leaves of Q can

then be preprocessed for point-location using the data structure of [10]. A point location query for a point q can then

be answered in O(log |Q|) = O(log (m/ε)) time.

References

[1] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An optimal algorithm for approximate nearest neighbor searching in fixed

dimensions, J. ACM 45 (6) (1998) 891–923.

[2] Sunil Arya, Theocharis Malamatos, Linear-size approximate Voronoi diagrams, in: Proc. of SODA, 2002.

[3] Sunil Arya, Theocharis Malamatos, David Mount, Space-efficient approximate Voronoi diagrams, in: Proc. of ACM STOC, 2002.

[4] Sunil Arya, David M. Mount, Approximate nearest neighbor queries in fixed dimension, in: Proc. of SIAM–ACM SODA, 1993, pp. 271–280.

[5] D. Attali, J.D. Boissonnat, Complexity of the Delaunay triangulation of points on a smooth surface, http://www-sop.inria.fr/prisme/

personnel/boissonnat/papers.html, 2001.

[6] F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM Comput. Surv. 23 (1991) 345–405.

[7] P.B. Callahan, S.R. Kosaraju, A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential

fields, J. ACM 42 (1995) 67–90.

[8] Kenneth L. Clarkson, An algorithm for approximate closest-point queries, in: Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994,

pp. 160–164.

[9] J. Erickson, Nice points sets can have nasty Delaunay triangulations, in: Proc. 17th Annu. ACM Sympos. Comput. Geom., 2001.

[10] G.N. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications, SIAM J. Comput. 14 (4) (1985) 781–

798.

[11] S. Har-Peled, A replacement for Voronoi diagrams of near linear size, in: Proc. of IEEE FOCS, 2001, pp. 94–103, full version available from

http://www.uiuc.edu/~sariel/papers.

[12] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing the curse of dimensionality, in: Proc. 30th Annu. ACM Sympos.

Theory Comput., 1998, pp. 604–613.

[13] Piotr Indyk, PhD thesis, Stanford University, 1999.

[14] Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani, Efficient search for approximate nearest neighbour search in high dimensional spaces, in:

ACM Symposium on Theory of Computing, 1998, pp. 614–623.

