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Abstract

We provide some explicit examples wherein the Schrödinger equation for
the Morse potential remains exactly solvable in a position-dependent mass
background. Furthermore, we show how in such a context, the map from the
full line (−∞,∞) to the half line (0,∞) may convert an exactly solvable Morse
potential into an exactly solvable Coulomb one. This generalizes a well-known
property of constant-mass problems.
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Morse potential plays an important physical role in quantum mechanics (see,

e.g., [1]). It is an exactly solvable potential and is of much use in spectroscopic

applications. It is also known to have a connection with the Coulomb potential

under a coordinate transformation — a feature well exploited [2, 3] to describe

supersymmetry for the hydrogen atom.

In this note we report on certain characteristics of a one-dimensional Morse

potential in a position-dependent mass (PDM) background. There has been con-

siderable interest in PDM problems for some time [4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Indeed there exists a wide

variety of situations in which PDM is of utmost relevance [29]. PDM also holds out

to deformations in the quantum canonical commutation relations or curvature of the

underlying space [30]. Furthermore, it has recently been observed that there exists a

whole class of Hermitian PDM Hamiltonians which, to lowest order of perturbation

theory, have a correspondence with pseudo-Hermitian Hamiltonians [31].

In a series of papers [20, 21, 22, 23], we extensively discussed the solutions of the

one-dimensional Schrödinger equation with PDM in the kinetic energy operator. We

explored, in particular, its matching with the coordinate-transformed constant-mass

version and the consequent decoupling of the ambiguity parameters appearing in the

effective potential. We also looked into the viable choices of the mass function (see

also [9, 10]).

Here we show that an exponential choice for the PDM allows one to transform

the corresponding Morse Hamiltonian into the constant-mass problem. The eigen-

functions of the latter being known, it is a simple exercise to determine those of the

former. On the other hand, a mapping to the half line (0,∞) results in the expected

conversion of the full line (−∞,∞) Morse into the Coulomb. We then demonstrate

how to identify the Coulomb potential in the presence of PDM. We also provide es-

timates of the potential parameter, modified angular momentum quantum number

and energy eigenvalues in such a setting.

The one-dimensional effective PDM Hamiltonian is given by [32]

Heff = − d

dx

1

M(x)

d

dx
+ Veff(x), (1)
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where Veff(x) contains the given potential V (x):

Veff(x) = V (x) +
1

2
(β + 1)

M ′′

M2
− [α(α+ β + 1) + β + 1]

M ′2

M3
. (2)

In (2), α, β are the ambiguity parameters and primes stand for the derivatives with

respect to x. We use the dimensionless form M(x) of the mass function m(x) =

m0M(x) and adopt units such that h̄ = 2m0 = 1.

The Schrödinger equation corresponding to (1) is

(

− 1

M

d2

dx2
+
M ′

M2

d

dx
+ Veff − ǫ

)

ϕ(x) = 0, (3)

where the first-derivative term can be removed by the transformation ϕ =
√
M ψ:

(

− 1

M

d2

dx2
+

3

4

M ′2

M3
− 1

2

M ′′

M2
+ Veff − ǫ

)

ψ(x) = 0. (4)

Let us set for M(x) and V (x) the following forms

M(x) = e−2x, V (x) = V0e
2x −B(2A+ 1)ex, (5)

where V0, A and B are coupling parameters. It then follows from (4) that

{

− d2

dx2
+ U(x) + V0 − [4α(α + β + 1) + 2(β + 1)− 1]

}

ψ(x) = 0, (6)

where U(x) = B2e−2x − B(2A + 1)e−x and we have put ǫ = −B2 for notational

reasons. We thus find that the Morse potential V (x) with an exponential PDM can

be transformed into the standard U(x) with constant mass.a With V0 = (A− n)2 +

[4α(α+ β + 1) + 2β + 1], the energy eigenvalues of the latter can be cast as [34]

En = −(A− n)2, n = 0, 1, . . . , nmax (nmax < A). (7)

Further, the corresponding wavefunctions can be expressed as

ψn(x) ∝ yA−ne−
1
2
yL(2A−2n)

n (y), y = 2Be−x. (8)

aActually, for some appropriate choices of parameters, U(x) coincides with the potential pro-
posed by Morse [33], while V (x) is an alternative (often used) form obtained by applying the parity
transformation x → −x.
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It is now straightforward to derive the wavefunctions of (3) by employing the

relation ϕ = e−xψ. We obtain

ϕn(x) ∝ yA+1−ne−
1
2
yL(2A−2n)

n (y). (9)

One can see ϕn(x) to be square integrable on (−∞,∞). Moreover for x → ∞,

the condition |ϕn(x)|2/
√

M(x) ∼ e−(2A+1−2n)x → 0 is fulfilled which, as has been

established elsewhere [22], is appropriate for a vanishing mass at x→ ∞.

It must be stressed that other choices of mass functions can be made which work

well for the Morse potential. It is also interesting to observe that the following form

for M(x),

M(x) =
1

(1 + κex)2
(κ > 0), (10)

renders both V (x) and Veff(x) Morse-like. Indeed plugging in V (x) from (5) (where

we have reset V0 = B2) gives

Veff(x) = B′2e2x −B′(2A′ + 1)ex, (11)

where B′2 = B2−2[2α(α+β+1)+β+1]κ2 and B′(2A′+1) = B(2A+1)+(β+1)κ.

Notice that like V (x), Veff(x) is also Morse but has the coefficients scaled. In terms

of the new parameters A′, B′, the energy eigenvalues turn out to be

ǫn = −1

4

(

2B′(2A′ + 1)− [(2n+ 1)∆ + 2(n2 + n+ 1)κ]

∆ + (2n+ 1)κ

)2

(12)

in which ∆ = 2
√
B′2 + κ2. The corresponding wavefunctions ϕn(x) can also be

determined. For the ground state, for instance, one finds the function

ϕ0(x) ∝ (1 + κex)
λ

κ
−µ− 1

2 eµx,

λ = −1

2
(∆ + κ), µ =

1

2

(

2B′(2A′ + 1)− κ

∆+ κ
− 1

)

, (13)

which is square integrable on (−∞,∞) and satisfies the condition

|ϕ0(x)|2/
√

M(x) → 0 for x→ ∞, as it should be.

We now turn to the Coulomb problem.
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A coordinate transformation x = ln r transforms a full line (−∞,∞) to a half

line (0,∞). Making this change of variable, Eq. (3) gets modified to the form



− 1

M̄

d2

dr2
+

1

M̄





˙̄M

M̄
− 1

r





d

dr
+

1

r2

(

V̂eff − ǫn
)



 ϕ̄n(r) = 0, (14)

where we have denoted

M̄(r) = M(x(r)) =
1

(1 + κr)2
, ϕ̄n(r) = ϕn(x(r)),

V̂eff(r) = Veff(x(r)) = B′2r2 − B′(2A′ + 1)r, (15)

and indicated by an overhead dot a derivative with respect to r.

A further substitution ϕ̄(r) =
√
r χ(r) results in the three-dimensional form of

the PDM radial Schrödinger equation



− 1

M̄

d2

dr2
+

1

M̄





˙̄M

M̄
− 2

r





d

dr
+
l(l + 1)

M̄r2
+ V̄eff −E



χnl(r) = 0, (16)

in which l is the angular momentum quantum number and V̄eff(r) is given by

V̄eff(r) = − 1

M̄





− 1

2r

˙̄M

M̄
+

(

l + 1
2

)2

r2





+
1

r2

(

V̂eff − ǫn
)

+ E. (17)

Note that Eq. (16) could also be arrived at if we generalized (1) to three dimen-

sions [28] and carried out the usual separation of variables in the corresponding

Schrödinger equation.

Actually we can convert (16) to the typical one-dimensional form (1), namely

(

− d

dr

1

M̄

d

dr
+ Ṽeff − E

)

ξnl(r) = 0, (18)

if we set χ(r) = 1
r
ξ(r) and define Ṽeff(r) as

Ṽeff(r) = V̄eff −
˙̄M

M̄2r
+
l(l + 1)

M̄r2
. (19)

For the choice of mass function in (15), Ṽeff(r) becomes

Ṽeff(r) = −B
′(2A′ + 1) + κ

2

r
− ǫn +

1
4

r2
+ E +B′2 +

3

4
κ2. (20)
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We conclude that the function ξnl(r) satisfies the equation
(

− d

dr

1

M̄

d

dr
− 2Z

r
+
l(l + 1)

r2
− 1

4
κ2 − λnl

)

ξnl(r) = 0 (21)

and may be interpreted to be the one satisfied by the Coulomb potential −2Z
r
in the

presence of PDM. In (21), we defined

2Z = B′(2A′ + 1)− κ

2
, l(l + 1) = −ǫn −

1

4
, λnl = −B′2 − κ2. (22)

In the constant-mass case (κ = 0), we have A′ = A, B′ = B, ǫn = −(A − n)2.

On using (22), we get

Z = B
(

A+
1

2

)

, l = A− n− 1

2
, λnl = − Z2

(n + l + 1)2
, (23)

and so Eq. (21) coincides with the standard radial equation of the Coulomb potential,

where λnl denotes the energy eigenvalues.

Finally, from (22) we can obtain solutions for Z, l and the eigenvalues λnl as

follows:

Z = B′

(

A′ +
1

2

)

− κ

4
,

l =
2B′(2A′ + 1)− [2(n+ 1)∆ + (2n2 + 4n+ 3)κ]

2[∆ + (2n+ 1)κ]
,

λnl = −
(

2Z − [n2 + (l + 1)(2n+ 1)]κ

2(n+ l + 1)

)2

, (24)

where we have used ǫn given by (12). These are to be interpreted as modified

expressions of the parameter Z, the angular momentum quantum number and the

eigenvalues in the presence of PDM.

The corresponding wavefunctions can be easily found from the relation ξnl(r) =
√
r ϕ̄n(r). From (13), for instance, we get

ξ0l(r) ∝ rµ+
1
2 (1 + κr)

λ

κ
−µ− 1

2 , (25)

which can be rewritten as

ξ0l(r) ∝ rl+1(1 + κr)−(
Z

(l+1)κ
+l+1) (26)
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as a consequence of (13), (22) and (24). It can be easily checked that such a

transformed wavefunction is square integrable on (0,∞) and fulfils the condition

|ξ0l(r)|2/
√

M̄(r) → 0 for r → ∞.

As a final comment, it is worth observing that nonnegative integer values of l

in (24)b are associated with some specific choices for the Morse potential and mass

parameters A′, B′, κ. This, however, is by no way a new feature due to the PDM

environment since it can be seen from (23) that a similar restriction exists for A and

B in the constant-mass case.
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