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Molecular couplings between DNA and water together with the accompanying

processes of energy exchange are mapped via the ultrafast response of DNA

backbone vibrations after OH stretch excitation of the water shell. Native salmon

testes DNA is studied in femtosecond pump-probe experiments under conditions of

full hydration and at a reduced hydration level with two water layers around the

double helix. Independent of their local hydration patterns, all backbone vibrations

in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshap-

ing of the spectral envelopes of their fundamental absorption bands upon excitation

of the water shell. The subsequent reshaping kinetics encompass a one-picosecond

component, reflecting the formation of a hot ground state of the water shell, and a

slower contribution on a time scale of tens of picoseconds. Such results are bench-

marked by measurements with resonant excitation of the backbone modes, result-

ing in distinctly different absorption changes. We assign the fast changes of DNA

absorption after OH stretch excitation to structural changes in the water shell which

couple to DNA through the local electric fields. The second slower process is attrib-

uted to a flow of excess energy from the water shell into DNA, establishing a com-

mon heated ground state in the molecular ensemble. This interpretation is supported

by theoretical calculations of the electric fields exerted by the water shell at different

temperatures. VC 2017 Author(s). All article content, except where otherwise noted,

is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4980075]

I. INTRODUCTION

The structure and function of biomolecules are intrinsically coupled to their aqueous envi-

ronment.1 Water forms a hydration shell which interacts with a biomolecular system through

local hydrogen bonds, short- and intermediate-range Coulomb forces from the dipolar water

molecules, and hydrophobic forces. In the case of DNA, the hydration pattern at the surface of

the double helix is highly inhomogeneous with the rather rigid so-called spine of water mole-

cules in the minor groove and a preferred hydration of the ionic phosphate groups of the back-

bone.2–6 Each phosphate group of the B-DNA helix, the structure prevalent under physiological

conditions, is hydrated by up to 6 water molecules forming hydrogen bonds with the free PO�
2

oxygens.7 Electric forces at the DNA surface have been shown to mainly originate from water

molecules in the first two hydration layers.8–10 The time averaged electric field amplitude

reaches values up to some 90 MV/cm.

The thermal motions of water molecules in the hydration shell are connected with struc-

tural fluctuations, e.g., librational motions, in the femtosecond time domain. Such fluctuations

a)Y. Liu and B. Guchhait contributed equally to this work.
b)elsasser@mbi-berlin.de

2329-7778/2017/4(4)/044015/15 VC Author(s) 2017.4, 044015-1

STRUCTURAL DYNAMICS 4, 044015 (2017)



are moderately slowed down by a factor of 3–5 compared to neat bulk water.11–15 Hydrogen

bond breaking and reformation occur both between water molecules in the hydration shell and

for water molecules forming H-bonds with the biomolecule. The underlying process is the

molecular jump mechanism which consists in large angular jumps of water molecules between

the original and the new hydrogen bonding geometry.16 For hydrogen bonds between water and

biomolecular units, the time scale depends on the hydrogen bond strength and the topology of

the biomolecule’s surface, again leading to a moderate slowing down compared to the few-

picosecond dynamics in the bulk outer part of the hydration shell. An exception is the water

molecules in the minor groove which form long-lived hydrogen bonds.13

The structural fluctuations give rise to (ultra)fast fluctuations of the electric field acting on

the DNA backbone with a fluctuation amplitude on the order of 625 MV/cm.10 The electric

interactions between the water shell and the DNA helix have recently been mapped by ultrafast

two-dimensional (2D) infrared spectroscopy of backbone vibrations which serve as molecular

probes at the water-DNA interface.9 The lineshape of the 2D spectra has allowed for extracting

frequency-time correlation functions for the different vibrations. The correlation functions of all

modes consist of an initial 300 fs decay representing the time scale of electric field fluctuations

and a long-lived component accounting for a quasi-static inhomogeneous broadening due to

structural disorder.

Beyond the electric interactions, there are processes of energy exchange and transfer

between DNA and its water shell. They are highly relevant for redistributing excess energy and

establishing a thermodynamic equilibrium state after the decay of electronic and/or vibrational

excitations. An efficient management of excess energy is essential for the biomolecule’s struc-

tural integrity and stability against thermal decomposition. While picosecond time scales of

energy transfer have been established for molecular systems in the liquid phase,17 energy

exchange and transfer between biomolecules and water are barely understood. Major issues are

the following:

• What are the mechanisms, time scales, and rates of energy transfer between DNA and its water

shell and vice versa?
• How do energy transfer kinetics between DNA and water compare to vibrational relaxation and

equilibration within DNA and within the water shell, i.e., does energy transfer occur between

equilibrated subsystems?
• Which degrees of freedom are involved in energy transfer, i.e., how local or delocalized are the

motions involved and over what dimensions do the structural units extend that must be consid-

ered in describing the transfer rates? Is there a distribution of transfer rates which originates

from the structural heterogeneity of the hydration shell?
• How can energy transfer processes be probed in experiments on femto- to picosecond time

scales?

In this article, we report a comprehensive study of DNA-water couplings and energy

exchange by ultrafast vibrational spectroscopy. Native salmon testes DNA containing some

2000 base pairs is studied under conditions of full hydration and at a reduced hydration level of

roughly two closed water layers around the double helix. We consider a scenario in which a

femtosecond mid-infrared pump pulse excites the water shell via the OH stretch absorption

band. The DNA response is probed in a time-resolved way by mapping transient absorption

changes of backbone modes which are sensitive probes located at the DNA-water interface.

The probe pulses cover a frequency range between 940 and 1120 cm�1. The experiments cover

more than two orders of magnitude in time from less than 1 up to 100 ps, in order to get insight

into slower picosecond processes. The behavior observed after OH stretch excitation is bench-

marked by measurements in which the backbone modes are excited and probed resonantly.

Our results reveal a quasi-instantaneous response of vibrational absorption on all backbone

modes, independent of their local hydration geometries. This initial response is followed by

kinetics on time scales of a few and a few tens of picoseconds. The resulting long-lived absorp-

tion changes reveal the formation of a common hot ground state of DNA and water. The few-

picosecond kinetics are assigned to water-DNA couplings mediated via the electric field the
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hydration shell exerts on the backbone while the time evolution in the regime of tens of pico-

seconds reflects a flow of excess energy from the water shell into the DNA helix.

II. METHODS

Femtosecond pump and probe pulses independently tunable in the mid-infrared are gener-

ated in two home-built optical parametric amplifiers (OPA) pumped by the output of an ampli-

fied Ti:sapphire laser system.18 In each OPA, a small part of the 805 nm pump pulses at a

1 kHz repetition rate generates a supercontinuum seed in a 1mm thick sapphire plate, serving

as the signal frequency input for parametric amplification in a barium beta-borate (BBO) crystal

which is used in a double-pass geometry. Subsequent difference frequency mixing of signal and

idler pulses in a 0.75mm thick AgGaS2 crystal provides pulses centered at 3450 cm�1 with an

energy of 1.6 lJ, while difference frequency generation in a 0.75mm thick GaSe crystal (z-cut,

h¼ 34.0�–36.5�) gives pulses tunable in the frequency range from 900 to 1200 cm�1. The

pulse-to-pulse stability in energy is better than 0.5%. Pump-probe measurements are performed

with pump pulses at 3450 cm�1, 1095 cm�1, and 1005 cm�1 while the probe pulses are centered

at 1095 and 1005 cm�1 with a bandwidth of 150 cm�1. The intensity ratio between the pump

and the probe is 50:1 and the time resolution is on the order of 100 fs. All measurements are

performed with parallel linear polarizations of the pump and the probe.

Pump and probe pulses interact with the DNA sample in a noncollinear geometry, using an

off-axis parabolic mirror for focusing on the sample and a second mirror to image the transmit-

ted probe light onto the detection system. The spot diameter on the sample is approximately

100 lm. In addition, a reference probe beam is introduced which travels through an unexcited

part of the sample. The probe and reference beams transmitted through the sample are spec-

trally dispersed and detected by a 2� 64-element HgCdTe detector array (spectral resolution

2 cm�1). Normalizing the transmitted probe to the reference intensity allows for measuring

absorption changes of the sample down to DA ¼ 0:03 mOD. The fraction of water molecules

excited in the pumped sample volume is 3%–4%.

Salmon testes DNA (Aldrich), which contains approximately 2000 base pairs (41%

guanine-cytosine and 59% adenine-thymine), was dissolved in an 0.1M NaCl solution in water.

In this solution-phase sample (thickness d � 7:5 lm) with Na þ counterions, the DNA helices

are fully hydrated with a water content of 150 water molecules per base pair. A reduced hydra-

tion level was implemented in thin DNA films, prepared by exchanging the Naþ counterions

against cetyltrimethylammonium (CTMA) with the procedure reported in Ref. 19. The films of

approximately 25 lm thickness were cast on BaF2 substrates and placed inside a home-made

humidity cell.20 The humidity level in the cell and, thus, the hydration level were maintained

fixed by connecting the cell to a reservoir containing either a saturated solution of NaBrO3 in

water or a P5O5 powder. The corresponding humidity levels are 92% r.h., corresponding to a

water content of 20–30 water molecules per base pair, i.e., roughly two closed water layers

around the DNA helices, and 0% r.h. with less than 2 water molecules per base pair.21

Electric fields imposed by the thermally fluctuating solvent are simulated by the procedure

described in detail in Ref. 10. In brief, molecular dynamics simulations were performed with

the Gromacs program package22 employing cubic boundary conditions and the TIP5P water

model.23 Electrostatic potential derived partial charges of dimethylphosphate (CH3O)2PO
�
2

(DMP) were taken from Ref. 24, and force field parameters are taken from the CHARMM27

force field25 of DNA. Intramolecular degrees of freedom of DMP were restricted with the

SHAKE algorithm. Equilibration was performed as described in Ref. 26; the first 100 ps of the

1 ns production run were further used for equilibration. We consider four equilibrated trajecto-

ries of the gauche-gauche (gg) conformer of DMP at temperatures T¼ 298, 310, 320, and

330K. The fluctuating electric field is evaluated up to quadrupoles within the framework of the

Effective Fragment Potential (EFP) model27 with a homewritten Cþþ code linked to the libefp

library.28 Electric fields are recorded at the midpoint of the oxygen-oxygen axis upon projection

on the C2 symmetry axis of the (PO2)
� group and averaged over 450 ps for each trajectory.
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III. RESULTS

A. Linear infrared absorption spectra

Linear infrared absorption spectra of the three DNA samples are summarized in Fig. 1(a)

where the absorbance A ¼ �log Tð Þ (T: sample transmission) is plotted as a function of wave-

number (cm�1). For the two hydrated samples (solution and 92% r.h.), the absorption between

3000 and 4000 cm�1 is dominated by the OH stretch band of the water shell. In contrast, the

different NH stretch bands of the base pairs prevail in the dry sample (0% r.h.) with a minor

contribution from residual water molecules.29 The group of narrow absorption bands close to

3000 cm�1 is due to CH stretch transitions of DNA and—in the thin-film samples—of CTMA

counterions. The fingerprint range below 2000 cm�1 includes the OH bend vibration of water

and DNA fingerprint modes.

In Fig. 1(b), the absorption spectrum of backbone vibrations of solution-phase DNA is

shown in the range from 940 to 1150 cm�1 for different sample temperatures T. There are six

backbone normal modes which contribute to the spectrum, the symmetric stretch mode of the

PO2 unit (P2), the diester linker modes L1–L3, and the deoxyribose ring modes R1 and R2

(Table I, Refs. 30 and 31). The normal modes include elongations of different local bonds,

FIG. 1. (a) Linear infrared absorption spectra of salmon testes DNA at different hydration levels. The spectra at 0% (less

than 2 water molecules per base pair) and 92% r.h. (20–30 water molecules per base pair) were measured with DNA films

in which the Naþ counterions were replaced by ionic CTMA. The solution-phase sample contains DNA with Naþ counter-

ions. (b) Infrared absorption of DNA backbone modes measured with the solution phase sample at different temperatures.

The black line gives the contribution of water to the overall infrared absorption. (c) Difference spectra of DNA in solution

for different temperature changes DT relative to ambient temperature (297K). The difference spectrum of bulk water is

shown for DT¼ 15K.
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i.e., are partially delocalized along a backbone segment between two phosphate groups. The

surrounding water gives rise to a broad absorption background (black solid line in Fig. 1(b),

T¼ 297K) which originates from high-frequency librations of water molecules.

Fig. 1(c) displays difference absorption spectra of the DNA sample for a temperature

increase of DT¼ 10, 15, and 20K relative to ambient temperature (T¼ 297K). In addition, a

difference spectrum of neat water is shown for DT¼ 15K. Together with a decrease of the

peak absorbance, the spectral envelopes undergo a moderate reshaping with increasing tempera-

ture. For the maximum DT¼ 20K, the relative changes of absorbance at the different maxima

are on the order of 5%, significantly larger than the density change of the water solvent. The

data are not corrected for the thermal expansion of the CaF2 cell windows which would result

in a relative change of the sample thickness of less than 10�2. It should be noted that the DNA

difference spectra contain contributions from both DNA itself and the water shell.

B. Direct excitation of backbone modes

Pump-probe measurements with direct excitation of the backbone modes were performed

in order to determine the vibrational lifetimes and characterize vibrational relaxation of DNA

embedded in a water shell in its equilibrium ground state. In Fig. 2, two sets of transient spectra

are presented for (a) DNA at 92% r.h. and (b) DNA in solution. The change of absorbance

FIG. 2. Transient pump-probe spectra of (a) DNA at 92% r.h. and (b) DNA in aqueous solution. The backbone modes are

directly excited by the pump pulses. The change of absorbance DA¼�log T=T0ð Þ in mOD is shown as a function of probe

frequency for pump-probe delays up to 50 ps (T, T0: sample transmission with and without excitation). Positive signals

DA > 0 are due to v¼ 1 to 2 transitions of the vibrations while negative signals DA < 0 occur on v¼ 0 to 1 transitions. The

weak dispersive lineshapes at late delay times point to small spectral shifts of the v¼ 0 to 1 transitions in the heated vibra-

tional manifold of DNA.
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DA¼�log T=T0ð Þ is plotted as a function of probe frequency for different delay times between

the pump and the probe (T, T0: sample transmission with and without excitation). At all spectral

positions, the absorption changes rise within the 100 fs time resolution of the experiment.

Positive absorption changes are due to the v¼ 1 to 2 transitions from the transiently populated

v¼ 1 states while negative absorption changes reflect the pump-induced bleaching of the v¼ 0

ground state and stimulated emission on the v¼ 1 to 0 transitions. With increasing hydration,

the absorption changes at 1090 cm�1 with a predominant contribution from the symmetric PO�
2

stretch vibration become significantly stronger. The enhanced v¼ 1 to 2 absorption of this

mode causes a sign change of the transient spectra in the range between 1065 and 1085 cm�1.

Here, the net signal represents the difference of this v¼ 1 to 2 absorption and the bleaching of

the v¼ 0 to 1 transitions of the diester linker modes L1 and L2 at 1050 and 1070 cm�1.

The changes of vibrational absorption decay by depopulation of the v¼ 1 states within some

5 ps to small residual signals. A numerical analysis of decay kinetics of the different bleaching

signals (not shown) gives the monoexponential decay times summarized in Table I. Such num-

bers are considered more reliable than decay times of enhanced absorption which—due to the

small frequency separation of the different bands—is influenced by both v¼ 1 population kinetics

and the reshaping of adjacent absorption bands. As has been discussed in Ref. 14, the few-

picosecond decay times are determined by both vibrational relaxation of the v¼ 1 back to the

v¼ 0 ground state of the respective mode and vibrational energy transfer from backbone modes

at higher to those at lower frequencies. The small residual absorption changes which occur in the

range of the different v¼ 0 to 1 transitions and persist up to delay times beyond 100 ps reflect

spectral shifts of the bands in the heated vibrational manifold of the DNA.

C. Backbone response after water excitation

An extensive set of data was generated with pumping the OH stretch vibration of water

molecules by a pulse centered at 3450 cm�1 and probing the response of DNA backbone vibra-

tions. In this scheme, there is no direct excitation of backbone modes to their v¼ 1 states. In

Fig. 3, transient spectra are presented for (a) DNA at 92% r.h., corresponding to roughly two

closed water layers around the double helices, (b) DNA in solution, and (c) neat water. The

DNA spectra cover a range of delay times up to 2 ps while the water spectra extend to 5 ps.

DNA spectra recorded at longer delay times between 2 and 100 ps are summarized in Fig. 4.

The transient spectra for 92% r.h. (Fig. 3(a)) are dominated by the DNA response while the

spectra of the solution sample consist of contributions from DNA and from the water environ-

ment. The latter gives rise to a broadband absorption enhancement at early delay times, similar

to what is shown in Fig. 3(c) for neat water.

The transient spectra of Figs. 3(a) and 3(b) display a response of all backbone modes

occurring simultaneously with the excitation of the water shell. The backbone response is char-

acterized by a reshaping of spectral envelopes with a pronounced bleaching at the spectral posi-

tions of the vibrational bands in the linear absorption spectrum and absorption enhancements

in-between these positions. The P2 band at 1087 cm�1 displays a blueshift giving rise to the

TABLE I. DNA backbone vibrations. The frequency positions are taken from the linear infrared absorption spectra. The

�R2 and �L3 modes contribute to a single absorption band with the maximum position given below. The decay times s are

derived from the bleaching components in the pump-probe data measured with direct backbone excitation.

Mode Character

Frequency at

92% r.h. (cm�1)

Frequency in

solution (cm�1)

s at

92% r.h. (ps)

s in

solution (ps)

�P2 Symmetric phosphate stretch 1089 1087 1.26 0.2 1.06 0.2

�L1 Diester linkage 1065 1069 1.66 0.2 …

�L2 Diester linkage 1058 1052 1.66 0.2 2.36 0.3

�R1 Furanose ring 1014 1017 … …

�R2 Ribose main chain 966 968 1.56 0.2 1.76 0.2

�L3 Diester linkage
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enhanced absorption above 1100 cm�1. During the first two picoseconds subsequent to water

excitation, the bleaching components become more intense while the reshaping of the positive

signal components remains limited. In the solution sample, the broadband enhancement of

water’s librational absorption makes a significant contribution at early delay times and decays

to a residual negative band that remains unchanged after 5 ps (cf. Fig. 3(c)).

The DNA spectra undergo a further reshaping on a slower time scale up to 100 ps, as

shown in Fig. 4. The bleaching components become more pronounced while the amplitudes of

the positive absorption changes are slightly reduced, except for the feature around 1100 cm�1.

The latter increases in strength and becomes spectrally narrower. It is important to note that the

DNA response after water excitation is markedly different from what is observed after resonant

excitation (cf. Fig. 2). Water excitation induces a bleaching of vibrational absorption which

rises continuously up to 100 ps while the signals measured with resonant excitation reach their

maxima at early delay times and then decay to small residual values at late delay times.

Time resolved absorption traces recorded at fixed probe frequencies (arrows in Fig. 3) are

presented in Fig. 5 for DNA at 92% r.h. and in Fig. 6 for DNA in solution. For comparison,

the neat water response is included in Fig. 6(e). The DNA transients at 1105 cm�1 (Fig. 5(d))

and 1099 cm�1 (Fig. 6(d)) show an initial decay with a time constant of 1 ps followed by a

slow rise (solid lines). All other DNA transients show an initial rise within the first 4 ps,

FIG. 3. (a) Transient pump-probe spectra of (a) DNA at 92% r.h., (b) DNA in solution, and (c) neat water after excitation

of the water OH stretch vibration by pulses centered at 3450 cm�1. The change of absorbance DA ¼ �log T=T0ð Þ in mOD

is plotted as a function of probe frequency for different delay times (T, T0: transmission of the sample with and without

excitation). The arrows mark the spectral positions at which the time-resolved transients of Figs. 5 and 6 were measured.
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followed by a slower rise of smaller amplitude within tens of picoseconds. These kinetics are

accounted for by a biphasic exponential rise of the absorption changes (solid lines). For DNA

at 92% r.h., one derives time constants between 0.9 and 1.3 ps for the fast rise, depending on

the spectral positions, and 176 4 ps for the slow rise at all spectral positions. The dashed-

dotted lines in Figs. 5(b) and 5(c) represent kinetics calculated with the fast rise only. DNA in

solution displays a fast rise with 1.16 0.1 ps and a slow rise with 116 2 ps at all spectral posi-

tions. The neat water transient is reproduced by a 1.1 ps decay to the negative residual absorp-

tion change, i.e., there is no slow component.

IV. DISCUSSION

The pump-probe data recorded with direct excitation of the backbone give insight into pop-

ulation kinetics of the v¼ 1 states of the different backbone modes. The v¼ 1 populations orig-

inate from both direct excitation by the pump pulse and population transfer from excited back-

bone modes at higher frequencies.14 The latter mechanism leads to a delayed proliferation of

v¼ 1 population with a time constant on the order of 2 to 3 ps, thus lengthening the population

decay. The overall decay times of the v¼ 1 states derived from the pump-probe data are in a

range from 1.0 to 2.5 ps (cf. Table I). The v¼ 1 relaxation represents the first step of energy

redistribution within DNA, followed by relaxation of the accepting modes and redistribution

within the vibrational manifold of DNA. To form a vibrationally heated ground state, spatial

transport of excess energy from the excited backbone parts along the double helix is required.

Current insight into the spatial spreading of excess energy in DNA is very limited whereas a

typical time scale between 5 ps and tens of picoseconds has been determined for chain-like

hydrocarbons and for peptide structures.32,33 Given the prominent role of delocalized low-

frequency backbone modes in energy transport, its time scales in peptides and DNA should be

FIG. 4. Transient pump-probe spectra of (a) DNA at 92% r.h. and (b) DNA in solution for late delay times between 2 and

100 ps.
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similar. The introduction of vibrational marker groups in DNA, in analogy to Ref. 33, may

allow for more detailed studies of energy transport along the double helix. In parallel to intra-

DNA transport, part of the excess energy is expected to be transferred to the water shell, in par-

ticular through the hydrated phosphate groups of the backbone. The small long-lived frequency

shifts observed in the pump-probe spectra at late delay times are a hallmark of the heated

ground state in which low-frequency modes coupling to backbone vibrations display a thermally

enhanced population, thus inducing the spectral shifts.34

We now discuss the processes occurring after excitation of the water shell via the OH

stretch vibration. Extensive experimental and theoretical work on neat water has provided

detailed quantitative insight into this relaxation scenario.35 The OH stretch vibration of H2O

has a lifetime of approximately 200 fs and decays via the v¼ 2 and v¼ 1 states of the OH

bend vibration.36 The v¼ 1 lifetime of the OH bending mode is 170 fs.37 In the first step from

the v¼ 2 to the v¼ 1 state of the OH bend vibration, an amount of energy equivalent to an OH

bend quantum is transferred to librational degrees of freedom, followed by a similar transfer in

the relaxation from the v¼ 1 to the v¼ 0 state of the bending vibration. According to recent

theoretical work, the main accepting libration is the L2 libration of the bend-excited water mol-

ecules.38,39 From this degree of freedom, energy is very rapidly (<100 fs) transferred into the

manifold of intermolecular modes and a hot vibrational ground state of the water shell is

formed with a time constant of approximately 1 ps.

FIG. 5. Time resolved pump-probe transients for DNA at 92% r.h. after OH stretch excitation of the water shell (cf. Fig. 3).

The absorbance change measured at fixed probe frequencies is plotted as a function of pump-probe delay (symbols). The

solid lines are numerical fitting curves to the data, comprised of a fast rise or decay (d) with a time constant between 0.9

and 1.3 ps depending on the particular probe frequency, and a slow rise with 176 4 ps. The dashed-dotted lines in (b) and

(c) represent transients calculated without the slow rise.
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In the present experiments, the water concentration in the DNA sample at 92% r.h. and the

solution-phase sample is 10M and 44M, respectively. The resulting optical penetration depths

of the pump pulses are 10.5 and 2.4 lm with a fraction of 3 to 4% of excited water molecules

in the irradiated sample volume. The spatial distribution of excited water molecules is distinctly

different in the two cases: in the sample at 92% r.h. with 20–30 water molecules per DNA base

pair, all excited water molecules are arranged in the two water layers around the DNA double

helix, i.e., in direct proximity. In contrast, 80% of the water molecules excited in the DNA

solution sample with 150 waters per base pair are beyond the first two layers. From the pump

energy deposited in the respective sample volume and the specific heat of water, one estimates

a temperature increase in the final hot water ground state of some 22K.

The DNA response after excitation of the water shell displays an initial rise time of 1.1 ps

and a subsequent slower rise with time constants of 17 ps for DNA at 92% r.h. and 11 ps for

DNA in solution. The rise time of the first component is identical to the formation time of the

hot ground state in the water shell. We conclude from this key result that (i) the DNA backbone

vibrations remain in their v¼ 0 states during water relaxation and (ii) the observed absorption

changes represent changes of the spectral envelopes of the different v¼ 0 to 1 absorption bands.

A direct energy transfer from water’s OH stretch and/or bend vibrations to the DNA backbone

modes, e.g., by dipole-dipole coupling, can safely be excluded because of the large energy mis-

match between the transitions. Moreover, any transient population of v¼ 1 states of DNA

modes by water relaxation would introduce additional kinetic components with time constants

similar to the decay times measured after direct excitation of the backbone (cf. Table I). As a

FIG. 6. (a)–(d) Time resolved pump-probe transients for DNA in solution recorded at different probe frequencies after OH

stretch excitation of the water shell (symbols). (e) Transient absorbance change of neat water after OH stretch excitation.

The fitting curves (solid lines) of the DNA data give an initial rise or decay (d) time of 1.16 0.1 ps and a slower rise with

116 2 ps. The water transient is reproduced by an initial 1.1 ps decay to the residual negative change of absorbance.
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result, the initial rise of the backbone response after water excitation would be slower than the

formation of the hot water ground state, in disagreement with our data.

A central issue is the coupling mechanisms between the water shell and the DNA backbone

which make the DNA vibrational lineshapes sensitive to heating of the water environment. A

first candidate is intermolecular energy transfer from water into DNA via anharmonically cou-

pled low-frequency modes, in particular through backbone units forming intermolecular hydro-

gen bonds with the water shell. To be consistent with the observation of identical 1.1 ps rise

times of the hot water ground state and the spectral reshaping of all DNA vibrational bands,

such a transfer would have to occur with time constants much shorter than 1 ps. To account for

the fact that all backbone vibrations display the same 1.1 ps rise, independent of the local

hydration geometry of the relevant functional groups, also the intra-DNA energy redistribution

would have to occur much faster than 1 ps. In view of the existing knowledge on intermolecular

energy transfer to and from large polyatomic molecules which suggests energy transfer times

between a few and several tens of picoseconds17,40 such a scenario is considered highly unrealistic.

The DNA backbone is subject to strong and fluctuating electric fields which mainly origi-

nate from water molecules in the first two layers around the double helix. Very recent experi-

mental and theoretical work has shown that the electric field amplitudes reach values as high as

90 MV/cm with fluctuation amplitudes of some 25 MV/cm.9,10 The fluctuations are due to the

fast thermal motions of water molecules in the water equilibrium structure, with frequencies up

to several hundred wavenumbers (cm�1). Excitation of the OH stretch and bend modes of water

molecules in the neighborhood of the DNA backbone and the subsequent formation of the hot

ground state change the spatial arrangement of water molecules and, thus, the electric field act-

ing on the backbone vibrations. To be more specific, population of the v¼ 1 state of the OH

stretch oscillator is expected to induce a strengthening, i.e., shortening of hydrogen bonds

around the excited water molecules and a concomitant change of the hydrogen-bonded water

network.41,42 In contrast, heating of the water network by delocalizing excess energy within a

period set by the 1.1 ps relaxation time results in a weakening of hydrogen bonds and an

increase in the fraction of less than fourfold coordinated water molecules.36 The resulting

change of electronic polarization of the backbone affects the potential energy surfaces of the

backbone vibrations quasi-instantaneously and gives rise to spectral shifts of vibrational transi-

tions and a reshaping of vibrational bands. In their v¼ 0 ground state, the backbone modes

respond to changes of the vibrational potential within a fraction of their vibrational period, i.e.,

for the modes considered here within less than 50 fs. Thus, the Coulomb coupling between the

rearranging water shell and the backbone vibrations maps the formation of the hot water ground

states onto the backbone’s vibrational spectra and results in identical kinetics of the water shell

and the backbone absorption changes. For the directly hydrated phosphate groups, there may be

a minor additional contribution from a thermally induced weakening of hydrogen bonds between

water molecules and the PO2
� groups but electric interactions will play the dominate role.26,43

This picture is further supported by the larger amplitudes of the DNA absorption changes

which are observed at early delay times in the 92% r.h. sample compared to the solution sam-

ple. In the first case, all excited water molecules are located in the first two water layers which

generate the relevant electric field while only 20% of water molecules excited in the solution

phase sample are part of the first two layers. In view of the short-range character of the electric

field at the DNA-water interface,8,10 larger changes in the acting electric field and, thus, stron-

ger initial absorption changes occur at the lower water level.

To assess the changes of electric field upon heating of the water shell in a more quantita-

tive way, we performed theoretical calculations on the model system dimethylphosphate (DMP)

in water. DMP has been used repeatedly as a model system for the DNA backbone in order to

determine its vibrational normal modes and to derive force fields for phosphate vibrations. The

phosphate group of DMP is the primary interaction site with water, being hydrated by up to 6

water molecules which form hydrogen bonds with the PO�
2 oxygens. The present calculations

treat the DMP/water system in its equilibrium ground state at different temperatures. Water

dynamics are simulated in the molecular dynamics approach described in Sec. II and the
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resulting distribution of electric field amplitudes at the phosphate group of DMP is derived for

different temperatures of the ensemble.

With increasing temperature, the time averaged radial distribution functions g(r) (Fig. 7(a))

display a decrease of water occupancy in the first layer and a concomitant increase and broaden-

ing in the second layer. While the spatial rearrangements are moderate, they nevertheless result

in a decrease of the electric field acting on the DMP phosphate group. Fig. 7(b) shows the time-

averaged distribution of electric field amplitudes at the phosphate group and Fig. 7(c) the differ-

ential change, where the differential maximum and minimum are separated by about 25MV/cm.

The reduction of the field amplitudes induces a blueshift of the symmetric and asymmetric

PO2 stretch vibrations. For the symmetric PO2 stretch vibration, one derives a value of D� ¼
a � DE �10 cm�1 with a¼ 0.4 cm�1/(MV/cm) taken from the ab-initio calculations of Ref. 43

and DE¼ 25 MV/cm. This value is in good agreement with the differential signal of the symmet-

ric PO2 stretch band in the transient DNA spectra at late delay times (Fig. 4(b)) where the

bleaching component and absorption enhancement are separated by about 10 cm� 1. We note that

mean values of time-averaged electric field amplitudes are only moderately affected for increas-

ing temperature (� 5MV/cm, cf. Fig. 7(b)) corresponding to an absolute spectral shift of the

v¼ 0 to 1 transition of the symmetric PO2 stretch vibration of � 2 cm�1. An earlier study of arti-

ficial DNA oligomers at 92% r.h. has revealed a separation of the bleaching and absorption

FIG. 7. (a) Radial distribution functions g(r) of water molecules as a function of distance between the PO2 oxygens of

dimethylphosphate and the water oxygens for four different sample temperatures. (b) Time averaged distribution of water

shell imposed electric fields projected on the C2 symmetry axis of the PO2 unit at the midpoint of the oxygen-oxygen axis

of DMP for the four different sample temperatures. (c) Occurrence difference of electric fields.
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enhancement component of the asymmetric PO2 stretch vibration by some 20 cm�1 after OH

stretch excitation of the water shell.44 This separation which also builds up with the formation

time of the hot water ground state is larger than for the symmetric PO2 stretch vibration, in line

with results from theory.10,43 Currently, there are no reliable force fields for the other backbone

vibrations and, at present, their smaller frequency shifts cannot be directly quantified.

We finally return to the issue of energy transfer from the heated water shell to DNA. The

transients in Figs. 5 and 6 consistently display slower kinetics on a time scale of tens of pico-

seconds. The transient spectra of Fig. 4 demonstrate that such kinetics are connected with a

moderate reshaping of the spectral envelopes. In particular, the symmetric PO2 stretching band

shows a spectral sharpening. We attribute such changes to a heating of the DNA double helix

by energy transfer from the water shell and energy redistribution within the helix on the same

time scale of several tens of picoseconds. The quasi-continuous density of states of the vibra-

tional manifold of the DNA helix represents an additional heat sink for the excess energy ini-

tially deposited in the water shell, leading to a reduction of the temperature jump in the equili-

brated system compared to the initial DT � 20 K of the water shell. The absorption changes

persistent after equilibration between the water shell and DNA are due to both changes in the

electric field the water shell exerts on the backbone and anharmonic couplings of thermally

populated low-frequency modes of the double helix to the backbone vibrations. The fact that

the late-delay spectra after water excitation are markedly different from the late delay spectra

after direct DNA excitation (cf. Fig. 2), the latter showing much smaller absorption changes,

may indicate that the field-induced changes predominate over effects originating from anhar-

monic coupling.

The pump-probe spectra of the solution-phase DNA sample measured at late delay times

(Fig. 4(b)) bear out spectral features very similar to the stationary difference spectra of Fig.

1(c) which were derived from the linear absorption spectra recorded at different temperatures,

i.e., under conditions where DNA and water shell are at the same temperature. There is, how-

ever, one major difference between the steady-state and the pump-probe measurements: In the

steady-state case, heating is connected with a thermal change of the macroscopic mass density

in the sample, affecting the molecular arrangements in the water shell and—to lesser extent—in

the DNA. After ultrafast excitation, the macroscopic density change builds up by acoustic pho-

non propagation in the sample, well beyond the time range covered in the pump-probe experi-

ments. The transient DNA spectra for time delays around 100 ps thus reflect conditions under

which the excess energy has been equilibrated between water shell and DNA but the mass den-

sity is still at a value characteristic for the initial lower temperature.

V. CONCLUSIONS

In conclusion, we have presented a detailed femtosecond infrared study of interactions

between DNA and its hydration shell at two different hydration levels. Using backbone vibra-

tions as sensitive probes of molecular couplings and energy exchange at and through the DNA-

water interface, the response of the backbone to excitation of the water shell was mapped in a

temporally and spectrally resolved way. The backbone vibrations display a biphasic response

with a fast 1 ps component occurring in parallel to the formation of a hot ground state in the

water shell and a subsequent slower contribution developing with time constants between 10

and 20 ps. The observed changes of the DNA vibrational spectra are due to a reshaping of the

v¼ 0 to 1 absorption bands of the different backbone modes which stay in their v¼ 0 ground

state under the present experimental conditions. Coupling between the water shell and the back-

bone is predominantly mediated by the electric field the water shell exerts on the backbone.

The electric field distribution changes upon formation of the hot water ground state which is

connected with a limited relocation of water molecules in the first and second layers around the

double helix. The fast component of the DNA response is due to this Coulomb-mediated cou-

pling and the observed blue-shift of the symmetric PO2 stretching band is in agreement with

estimates based on MD simulations of the change in electric field distribution and the relevant

force field. Energy transfer into the DNA double helix occurs on a slower time scale of tens of
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picoseconds and establishes a common heated ground state of water shell and DNA. The redis-

tribution of excess energy within the DNA structure requires energy delocalization throughout

the double helix, a process occurring on a similar time scale of tens of picoseconds. Further

studies are required to clarify the kinetics and mechanisms of the latter two processes in more

detail.

Our results demonstrate the pronounced sensitivity of biomolecular vibrations and their

absorption spectra to electric fields exerted by an aqueous environment. The underlying Coulomb

couplings are comparably strong and—in the present case—seem to prevail over anharmonic

couplings and their impact on the vibrational spectra. Future work will need to address the

Coulomb couplings in a more quantitative way for which studies of model systems with well-

defined geometries and water content as well as the application of electric field transients in the

terahertz range will be as important as in-depth theoretical calculations and simulations. Another

open issue is the molecular pathways of energy transfer between biomolecules and their water

shells.
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