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Abstract This paper proposes and validates a modified

cellular automata model for determining interaction rate

(i.e. number of car-following/overtaking instances) using

traffic flow data measured in the field. The proposed model

considers lateral position preference by each vehicle type

and introduces a position preference parameter b in the

model which facilitates gradual drifting towards preferred

position on road, even if the gap in front is sufficient.

Additionally, the model also improves upon the conven-

tional model by calculating safe front and back gap

dynamically based on speed and deceleration properties of

leader and follower vehicles. Sensitivity analysis was car-

ried out to determine the effect of b on vehicular interac-

tions and the model was calibrated and validated using

interaction rates observed in the field. Paired tests were

conducted to determine the validity of the model in

determining interaction rates. Results of the simulations

show that there is a parabolic relationship between area

occupancy and interaction rate of different vehicle types.

The model performed satisfactorily as the simulated

interaction rate between different vehicle types were found

to be statistically similar to those observed in field. Also, as

expected, the interaction rate between light motor vehicles

(LMVs) and heavy motor vehicles (HMVs) were found to

be higher than that between LMVs and three wheelers

because LMVs and HMVs share the same lane. This could

not be done using conventional CA models as lateral

movement rules were dictated by only speeds and gaps. So,

in conventional models, the vehicles would end up in

positions which are not realistic. The position preference

parameter introduced in this model motivates vehicles to

stay in their preferred positions. This study demonstrates

the use of interaction rate as a measure to validate micro-

scopic traffic flow models.

Keywords Cellular automata � Vehicular interaction rate �
Position preference � Traffic flow modelling � Video-
graphic survey

1 Introduction

One of the problems encountered in traffic safety analysis

is that it is difficult to obtain reliable exposure between

different vehicle types such as trucks, buses, cars, two

wheelers (2Ws) and three wheelers (3Ws). In one of the

few studies dealing with this issue, Nationwide Personal

Travel Survey data were used to estimate vehicle miles

driven as measure of exposure [1]. Bhalla et al. [2] esti-

mated exposure between pair of vehicles as the product of

number of vehicles of that type and average vehicle miles

travelled by that vehicle. Overall exposure of vehicles can

be estimated from origin–destination surveys or household

surveys, but these are not easily available. However, these

exposure estimates do not tell us much about the actual
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interaction between vehicles on the road. Attempts to

correlate total distance travelled (exposure) to vehicular

interaction would be inaccurate as vehicular interactions

significantly depend on vehicle positioning pattern in

addition to density and composition. Recently, some

studies have tried to understand microscopic vehicular

interactions that contribute to accidents [3–5]. Oh et al. [4]

suggested that exposure is equal to the total time a vehicle

pair spend in following. Their approach allows for more

precise measurement of exposure between the two vehicle

types on a given road. The simulation model was calibrated

and validated using traffic characteristics such as volume,

density, speeds, occupancy time, etc., and then used to

predict the exposure. This approach of using microscopic

traffic flow simulation can be further explored to determine

the exposure or interaction rate between different types of

vehicles using the field data.

Over the years, various microscopic traffic flow models

have been developed to predict vehicular behaviour from a

mid-block section of road to the network level. In micro-

scopic traffic flow models, each vehicle is described by its

own equation of motion; hence, the computational time and

memory required are greater for these models. In this

context, Cellular Automaton (CA) modelling has been

found promising to meet this challenge. The concept of

microscopic traffic flow CA model was first coined by

Cremer and Ludwig [6]. Their study was followed by

Nagel and Schreckenberg [7], whose model was found to

be superior in modelling randomisation in traffic flow. This

model was very basic as it had only four rules that gov-

erned the movement of vehicles in a stream. These rules

were acceleration, deceleration, randomisation and repo-

sitioning of vehicle based on new speed. This model even

in its basic form was able to replicate some of the traffic

features of homogeneous, single lane road with periodic

boundary conditions. Most of the CA-based traffic flow

models have addressed the homogeneous traffic flow and

its behaviour. Due to the discreteness of this model, it

provides an opportunity to simulate large-scale real time

microscopic phenomena like platoon formation and the

capacity drop at transitions between free and congested

flow. Later, others [8–10] contributed to the development

of the model by adding more rule sets to increase its

capability to replicate traffic features seen in multilane and

heterogeneous traffic. Matthew et al. [11] proposed a

modified cell size, randomisation rule and lane-changing

rule of CA model for heterogeneous conditions. Mallikar-

juna and Rao [12] (Ma–Ra) developed a heterogeneous

traffic model for Indian conditions. They found that traffic

in India is highly heterogeneous with frequent lane

changing; hence, it was necessary to modify the Knospe’s

model to incorporate many types of vehicles and also their

lateral movements. Traffic composition in India includes a

significant proportion of motorised 2Ws and motorised

3Ws that have smaller dimensions than cars. Mallikarjuna

and Rao reduced cell dimensions to 0.5-m in length and

1.75-m in width to represent different lengths and speed

differentials in each time-step for various vehicle types.

Lateral and longitudinal movement rules were also

improved from earlier models. Zhao et al. [13] developed a

CA model for determining interactions between motorised

and non-motorised vehicles near a bus stop. This model

incorporated non-lane based behaviour of non-motorised

vehicles. Vasic and Ruskin have developed a CA model to

simulate the road network structure [14]. This was done to

simulate car and bicycle traffic on mid-blocks and at

intersections. Xie et al. [15] developed a CA model for

modelling interactions between vehicles and pedestrians at

signalised crosswalk. Their results showed that there was a

critical value that divides the vehicle flow into free and

congested flow portions. Zhang et al. [16] compared CA

and gas dynamics models using speed density character-

istics of the mixed bicycle traffic (i.e. bicycle traffic

including electric bicycles). They found that the results

produced from CA were more consistent with the observed

data when density was lower, while gas dynamics model

performed better at densities higher than 0.3 bicycles/m2.

Tao et al. [17] proposed an improved brake light CA model

by improving acceleration rules and to avoid over-decel-

eration, the randomisation probability and deceleration

extent are determined according to the results of the step of

deterministic deceleration. Xie and Zhao [18] developed a

CA model that considered timid and aggressive driving

behaviours. They modified the anticipated speed of the

preceding vehicle with a new constant parameter, Dv rep-

resenting the aggressiveness of driver. Further, they found

that even a small proportion of timid drivers significantly

reduce the road capacity while it needs much more

aggressive drivers to increase road capacity. Zheng [19]

exhaustively reviewed the lane changing models available

for microscopic traffic flow modelling. This study sug-

gested that a comprehensive model that captures lane

changing decisions needs to be developed and that this

model should be able to predict vehicle trajectories close to

that observed in field at microscopic level. At macroscopic

level, the model should be able to produce fundamental

traffic flow characteristics. Until now, researchers have

evaluated CA models microscopically using individual

vehicle trajectories [20] or macroscopically using traffic

characteristics such as stream speed, average flow, density

or occupancy and number of overtaking instances

[8, 10, 12]. Pandey et al. [21] evaluated the CA model

proposed by Mallikarjuna and Rao and found that even

though the CA model could simulate fundamental
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diagrams (flow vs density plots) satisfactorily, it gave

unexpected results when microscopic characteristics such

as lane-maintaining behaviour, car-following and overtak-

ing manoeuvres were compared with those observed in

field. Also, the mean stream speed and capacity of road

were higher than that observed on road. Authors believe

that this was due to inadequacy that arises in not consid-

ering the heterogeneous nature of vehicles and difference

in driving behaviour. Some of the inadequacies are listed

below:

1. Inadequacies in lateral movement rules

In the Ma–Ra model, overtaking vehicles are supposed

to meet two criteria: (a) incentive criterion and

(b) safety criterion.

(a) The incentive criterion requires the vehicle to

have longitudinal gap in target lane to be greater

than the current speed multiplied by a factor. That

means the vehicular lane change behaviour was

purely based on availability of longitudinal gaps

on road and that vehicles had no preference or

desired position on road. This may not be true as

it was found in this study that vehicles do have a

preferred position on the road [21]. For example,

heavy vehicles such as trucks and buses [hence-

forth referred to as heavy motor vehicles

(HMVs)] tend to drive closer to median (hence-

forth referred to as ‘median lane’ in this paper)

while lighter vehicles such as bicycles and three

wheelers prefer travelling closer to shoulder

(henceforth called as ‘shoulder lane’ in this

paper). This phenomenon plays a very important

role in determining stream speeds and inter-

vehicular interactions as heavy vehicles prefer

inner most high-speed lane over outer slower lane

consisting three wheelers and bicycles. This

means that maximum gap and speed are not the

only criteria but also convenience. This was also

evident as simulated stream speeds were higher

than observed due to vehicles changing lanes

based on just gap size and not convenience or

safety. This results in higher than expected

speeds. Hence, there is a need for identifying

adequacies in Ma–Ra model in terms of deter-

mination of the interaction rate between different

vehicle types.

(b) The safety criterion requires the incoming vehicle

from back to have back gap greater than current

speed multiplied by factor. It was based on the

assumption that vehicles coming from the rear

would never decelerate even if a vehicle would

enter into their lane ahead of them. Hence, the

required gap calculated by safety criterion was

much higher than those observed in field [21].

This may possibly cause large and unrealistic

vehicular queues at lower densities as the vehi-

cles would rarely get enough gaps for overtaking.

2. Inadequacy in longitudinal movement rules

The minimum safe distance between the vehicles was

considered constant, irrespective of type of vehicles

involved or their current speeds. This was unrealistic as

studies have found that vehicles maintain different longi-

tudinal gaps based on the type of the leader vehicle. For

example, a HMV may maintain a higher longitudinal gap,

while following 3W or 2W carrying children than follow-

ing vehicles without children. It is also known that the

minimum safe distance depends on the current speeds and

the maximum deceleration rates of both vehicles.

Literature review in this area suggests that even when

risk analysis has been an area of focus for researchers

working in this field, most have assumed the number of

crashes between vehicle pair as a subset of total exposure

between them. Exposure was expressed as vehicle kilo-

meters or vehicle hours travelled by that vehicle during the

study period. Authors believe that this exposure is not

accurate as it is based on the assumption that driver

behaviour is similar across vehicle types and road types,

which may not be true. Hence, there is a need to develop a

new method of measuring exposure or interaction between

vehicles based on the number of car-following and over-

taking events observed in the field. It can thus be under-

stood that the number of car-following and overtaking

events between two vehicle types can be described as an

interaction rate between two vehicle types. These are better

correlated to crashes than vehicle kilometers or vehicle

hours travelled. In this study, it was assumed that most

crashes occur during car-following or overtaking events

thus a microscopic traffic flow model based on CA could

be explored to simulate the interactions between vehicle

pairs. This led to the development of a position preference

based CA (PP-CA) model for heterogeneous traffic con-

ditions in the present study.

The rest of the paper is organised as follows. The

modified longitudinal and lateral movement rules of the

proposed model are discussed in Sect. 2. Section 3 dis-

cusses data collection and extraction methodology. Sub-

sequently, Sect. 4 includes the validation of the model

using fundamental diagrams and differences in observed

and simulated interaction rates. Section 5 illustrates the

application of the proposed model in determining the

maximum interaction rates for different vehicle pairs in

given traffic conditions.

Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with… 165

123J. Mod. Transport. (2017) 25(3):163–177



2 Position preference based CA model

2.1 Model description

Inadequacy in lateral movement rules (Sect. 1 (1a)) is

addressed by introducing a position preference parameter

in the incentive criteria that reduces the probability of lane

change as the distance between the target position and the

preferred position increases. A difference between the

proposed and conventional brake light models is that

conventionally it was assumed that the probability of lane

change only depends on the speed of the subject vehicle

and hence only one parameter a was used. This parameter

captures the gap acceptance behaviour of the driver as a

function of speed of vehicle. But in the proposed model, it

is assumed that the probability also depends on the current

position of the subject vehicle across road width. As dis-

cussed earlier, vehicles tend to have a desired or preferred

position on road based on the vehicle type. As a result,

vehicles often try to stick to their preferred lane even if

there is a greater gap available on the adjacent non-pre-

ferred lane. This phenomenon is explained in detail in

Fig. 1, which shows various interacting factors that may

affect the driver’s decision (i.e. subject vehicle) during a

lane change instance in the model. In the study, the Ma–Ra

model is used as reference model for comparison and hence

the conventional model refers to the Ma–Ra model.

However, both models are quite different.

2.1.1 Lateral movement rules

In this section, the lateral movement rules for the proposed

model are presented. In Fig. 1, xtn (grey vehicle) is a subject

vehicle that is trying to decide between three options. They

are: Option 1 (lane change and follow the leader car xtþ1
nþ2),

Option 2 (lane change and follow the leader 3W xtþ1
nþ3), and

Option 3 (no lane change and keep following the leader

vehicle xtþ1
nþ1). Option 3 is close to a do-nothing scenario as

the subject vehicle keeps following the leader 3W even if

3Ws are slower than light motorised vehicles (LMVs),

heavy motorised vehicles (HMVs), and 2Ws. Also, notice

that Option 3 has a lower longitudinal gap (gfn) compared to

Options 1 and 2 (gtf1n , gtf2n ). Here, gfn is the front gap

available to the subject vehicle (nÞ after considering the

anticipated movement of the leader vehicle on the current

lane. In Fig. 1, gcfn is the minimum safe distance between

the subject vehicle n and its leader vehicle on the current

lane (Option 3), calculated using Eqs. 1 or 2, whereas gcf1n

and gcf2n represent the minimum safe distance between the

subject vehicle n and its leader vehicle for Options 1 and 2,

respectively; gtbn is the total back gap available on the target

lane, gcbn is the minimum safe gap on the target lane

between subject and incoming vehicles (Eq. 3), and ln is

the length of the subject vehicle. According to conven-

tional CA models, Option 2 is better as it offers a larger

longitudinal gap (gtf2n ) and hence higher speeds compared

to Options 1 and 3 (gtf1n , gfn). But, Options 2 and 3 would

put the subject vehicle behind 3Ws (nþ 1, nþ 3) which

have the slowest speeds and relatively higher maximum

deceleration rates of the four vehicle types considered in

the study. Hence, it can be assumed that the braking dis-

tance for 3Ws, which is a function of deceleration rate and

speed of vehicle, would be lower than that of LMVs,

HMVs and 2Ws. So, a subject vehicle following 3Ws

(nþ 1, nþ 3) needs to maintain a larger gap (safe distance)

as compared to those when following LMV, HMV and

2Ws. Hence, even if gtf2n is larger than gtf1n and gfn, the

Median                        Direction of Movement 
Truck Three-Wheeler Two-Wheeler

Car Subject Vehicle
Option 1

∆ = 10 − 10 = 0
Closest to the most preferred cell for 

trucks

Option 2
∆ = 10 − 4 = 6

Farthest from the most preferred cell for 
trucks

Option 3
∆ = 10 − 7 = 3

Medium distance

− 2

− 1

+ 1
+ 1

+ 1

+ 1

+ 2
+ 1

tb2

cb2

cb1

tb1

cf1

cf2

tf2

tf1

f

+ 1

cf

Option 1

Option 2

Option 3

Fig. 1 CA lattice structure and relative positioning of vehicles
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effective gap (gtf2n � gcf2n ) for Option 2 can be smaller than

those for Options 1 and 3. Also, if the gap gtf2n is not large

enough the subject vehicle may be forced to change lane

again and return to its present lane. On the other hand,

Option 1 would put the subject vehicle behind car (nþ 2).

If the subject vehicle is also a car, Option 1 would allow

higher speeds as compared to Options 2 and 3, in spite of

Option 2 offering the highest gap. Since most cars travel

closer to the median lane (Option 1) [21], Option 1 is the

most preferred position for the subject vehicle. Option 1

would bring the subject vehicle closer to a preferred

position and Option 2 would take it away from the pre-

ferred position. Hence, if the gap gtf2n is not large, Option 1

would appear better than Option 2. To incorporate this

phenomenon an additional parameter beta ðbÞ is included

to improve lane keeping profiles of vehicles. In the pro-

posed PP-CA model, the probability of a subject vehicle

making lane change to a target lane decreases with an

increase in the speed of the subject vehicle and the dif-

ference between current position and preferred position of

the subject vehicle represented by Dxn.Together, a and b,
respectively, represent the mandatory and voluntary aspect

of lane changes as observed in the field. Figure 2 shows the

incentive and safety criteria used to decide if the gap in the

target lane (gtfn ) is large enough to justify a lane change.

The decision to change a lane is based on the current speed

of subject and leader vehicles, denoted by vtn and vtnþ1,

respectively, and the difference of current and target

positions from preferred position, denoted by Dxn and Dxtn,
respectively. Hence, the incentive criteria can be divided

into two parts:

1. The gap calculated after considering the speed and

position on the target lane (to the left of incentive

criterion) is larger than that calculated for the current

lane (to the right of incentive criterion)

2. The speed of the subject vehicle is either zero or the

speed of the leader vehicle is less than the maximum

speed of the subject vehicle.

Further, safety criterion ensures that the total gap

available on the target lane to be larger than the sum of the

safe gap between the subject vehicle and incoming vehicle

on the target lane and the length of the subject vehicle.

Thus, the proposed model is adequate for heterogeneous

traffic conditions in developing countries where different

vehicle types with varying maximum speeds and acceler-

ation rates are forced to share lanes. In these conditions, it

is common to observe vehicles not initiating lane change

for fear of getting stuck in non-preferred lanes/position and

behind slower vehicles. But the model is generally appli-

cable to roads with slower and faster lanes as the vehicles

would prefer to stay on faster lane even if a larger gap

available on slower lane/position.

2.1.2 Implications of position preference parameter

One of the implications of position preference parameter

bð Þ is that it provides incentive to make lane change even if

the subject vehicle is travelling at the desired speed. In

conventional models, a vehicle would require two slower

leader vehicles to complete a lane change manoeuvre. A

complete lane change manoeuvre may be defined as a

vehicle makes a lane change for overtaking the leader

vehicle and then return to the original lane. Thus, a com-

plete lane change manoeuvre involves two lane change

processes and at least one leader vehicle. But in conven-

tional CA models, the lane change is initiated only when

following slower leader vehicles. Because of this, two

slower leader vehicles would be required to complete a

lane change process. If lane change manoeuvres are not

completed in simulation or if the vehicles could not return

to their original lanes after overtaking, the vehicles would

end up in positions where they are hardly observed in field

[21]. For example, HMVs travel closer to shoulder lanes

instead of median lane. Position preference parameter

allows vehicles to drift towards their preferred position on

road as observed in data. This improvement in the model

significantly changes the outcome of simulation as shown

in subsequent sections. Also, in CA models, lane change

rules can be symmetric or asymmetric with respect to lanes

or vehicle type [9]. In symmetric models, both lanes are

treated equally or all vehicle types have equal probability

of acquiring a position on cell lattice. Asymmetric models

are applicable when left/right overtaking is banned or when

certain vehicle types are not allowed to acquire a certain

position on road. In our model, the position parameter bð Þ
allows to switch between symmetric and asymmetric rules.

At b = 0, the model is perfectly symmetric, but as the

value of bð Þ increases it becomes more and more

asymmetric.

Incentive criterion

if − × − × Δ > − − × Δ &( > or = 0)

Safety criterion

if ( > + )

Fig. 2 Lateral movement criteria
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2.1.3 Longitudinal movement rules

Based on evaluation of lane change options and longitu-

dinal movement rules, the model determines the exact

position of a vehicle on the cell matrix. The longitudinal

movement rules used in the study are similar to those

proposed by Mallikarjuna and Rao [12] for heterogeneous

conditions but with some modifications. In this model,

originally based on Knospe’s brake light model [9], the

subject vehicle would react to the ‘brake light status’ of the

leader vehicle. If the gap in front is less than the interaction

headway, it would adjust itself based on the speed of the

leader vehicle. If the gap is more than the interaction

headway, the subject vehicle would accelerate until it

reaches a desired speed. If the gap is less than the safe gap,

the subject vehicle would decelerate until a safe driving

conditions is achieved. The acceleration is modified with a

probability term po when the vehicle starts from rest and

pdec when the vehicle slows down. In this study, the lon-

gitudinal rules were modified such that the security gap

used for calculating the effective gap for determining safe

driving conditions is calculated dynamically based on

speeds and maximum deceleration rates of subject and

leader vehicles (Eq. 1). The longitudinal movement rules

shown in Fig. 3 are explained below.

Step 1 Value of randomisation parameter determines the

probability of deceleration based on headway and speed

of the subject vehicle and the brake light status of the

leader. If brake light is on (=1) and headway ðthnÞ is less
than the interaction headway (ts), then the probability of

deceleration p ¼ pbl. If the speed of the subject vehicle

ðvtnÞ is zero, then the probability of deceleration p ¼ po.

Otherwise p ¼ pdec.

Step 2 The subject vehicle would accelerate if the

braking status of the leader is off (=0) and the effective

headway is larger than the interaction headway.

Step 3 The subject vehicle would decelerate if the speed

obtained from acceleration rule is larger than that for a

safe gap.

Step 4 The randomisation rule is applied based on the

probabilities calculated in Step 1 to capture the stochas-

tic behaviour of drivers in the field assuming that

vehicles decelerate randomly.

Step 5 Subject vehicle’s position is updated based on the

speed obtained from Step 4.

In Fig. 3, thn is the available time headway for the subject

vehicle n, the leader vehicle is referred to as nþ 1 and the

following vehicle as n� 1; ts is the interaction headway

between subject and leader vehicles; vtn and vtþ1
n are the

speeds of subject vehicle at time-steps t and t þ 1,

respectively; van, vbn; and vtþ1
n are the updated speeds of

subject vehicle after applying acceleration, braking and

randomisation rule, respectively; ln is the length of the

subject vehicle; an vtn; ln
� �

is the acceleration which is a

function of speed and vehicle type of the subject vehicle;

Step 1: Determination of the randomization parameter

= , , , = if = 1 and <

= if = 0

= in all other cases

Step 4: Randomization rule

if (rand( ) < ) then:

if ( = or )

= max( − ( ), 0)

if ( = )

= max( − 1, 0)

if ( = ) then:

= 1

Step 2: Acceleration

if ( = 0) and ( = 0) or ≥ then:

= min( + ( , ) , )

Step 3: Braking rule

= min( , )

if ( < ) then:

= 1

Step 5: Car motion

= +

Fig. 3 Steps in longitudinal movement procedure
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similarly, dn lnð Þ is the deceleration rate of subject vehicle

which is a function of vehicle type; vmax
n is the maximum

speed of the subject vehicle; xtn and xtþ1
n are longitudinal

positions of the subject vehicle at time t and t þ 1,

respectively; po; pbl and pdec are the probabilities of subject

vehicle applying brake randomly based on different con-

ditions mentioned in step 1 (i.e. determination of ran-

domisation parameter); plc is probability of lane change at

any time-step. The values of these parameters are presented

in Sect. 5.2.

Safe distance is the minimum gap a vehicle would

maintain in order to avoid collision in case the front vehicle

is applying brakes suddenly. btn and btnþ1 are the binary

variables denoting brake light status of subject and leader

vehicle, respectively, at time t(if equal to 1, brake light is

on).

Authors observed that in staggered driving conditions,

the headways can be much lower than that required for a

normal deceleration process. This suggests that drivers

often keep a minimum gap considering maximum decel-

eration capabilities of vehicles while following. Also, as

the subject vehicle’s speed would be limited by safe gap

(braking rule), the erratic deceleration behaviour of con-

ventional CA models is avoided. This increases the scope

of the model as it can now simulate sudden braking of the

leader vehicle without causing collision or unrealistic

deceleration of the subject vehicle.

2.1.4 Safe gap calculations-following gap

While applying the longitudinal movement rules of the

proposed model, the safe following distance was calculated

dynamically instead of adopting a constant value. As dis-

cussed in (2) of Sect. 1, the safe distance between vehicles

would depend on their vehicle types and speeds and hence

adopting a constant value is not very realistic. Therefore, a

safe distance between the leader and follower was assumed

to be a function of velocities and deceleration rates of the two

vehicles. Safe distance, shown in Eq. 1, was calculated as the

difference between the distance travelled during the reaction

plus braking time of the subject vehicle and the distance

travelled by the leader vehicle during that time. Figure 4

illustrates car-following and explains the basis for deter-

mining the minimum safe distance gcfn . In Fig. 4, the leader

vehicle nþ 1 applies brakes at time t = 0; then the subject

vehicle n applies brake after a reaction time trn. Tn is the time

when the subject vehicle’s speed becomes zero or equal to

that of the leader vehicle. In order to avoid collision at t ¼ Tn,

the distance covered by the subject vehicle n between t = 0

and t ¼ Tn should be less than the sum of the gap between the

two vehicles at t = 0 and the distance covered by the leader

vehicle between t = 0 and t ¼ Tn. Hence, we have

trn � vtn þ
ðvtnÞ

2

2dmax
n

\gn þ
ðvtnþ1Þ

2

2dmax
nþ1

;

Safe following gap

n

t=0

n+1

t=0

n

t=

n+1

t=

n n+1

t= t=

Braking distance for n+1

Braking distance for nDistance during reaction of n

t=0

n

t=0 n-1

t=

n n-1 n

t=

Distance covered by n

t=

n-1

t=

Braking distance for n-1Distance during reaction of n-1

Safe back gap

Fig. 4 Safe distance while following and lane change
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where dmax
n and dmax

nþ1 are the maximum deceleration rates of

the subject vehicle n and the leader vehicle nþ 1,

respectively; vtn and vtnþ1 are the speeds of the subject and

leader vehicles at time t; and gn is the gap available for the

subject vehicle n.

When gn ¼ gcfn , the safe distance required by the subject

vehicle while following is

gcfn ¼ trn � vtn þ
ðvtnÞ

2

2dmax
n

�
ðvtnþ1Þ

2

2dmax
nþ1

: ð1Þ

A negative value for gcfn represents that the distance

covered by the leader vehicle is larger than that by the

subject vehicle and hence a collision would never happen

as the subject vehicle would not be able to reach the leader

vehicle. Thus, in this case, the minimum safe distance

would be maintained when both vehicles travel an equal

distance. Hence, in Eq. 1, assuming the second term is

equal to the third term, the safe distance required by the

subject vehicle would be

gcfn ¼ trn � vtn: ð2Þ

2.1.5 Safe gap calculations-back gap

Inadequacy in lateral movement rule (Sect. 1 (1b)) is

addressed by determining the back gap distance dynami-

cally using vehicular deceleration rates and current speeds

(explained later). In the proposed model, it is assumed that

while making a lane change, the subject vehicle only looks

for a safe stopping distance between itself and the incom-

ing vehicle from the rear on the target lane, which is

denoted by gcbn . Conventional brake light models require

this distance to be equal to a factor (a) multiplied by the

speed of the incoming vehicle. This means they ignore the

fact that the incoming vehicle would decelerate in the

following time-steps upon seeing the subject vehicle

entering the lane ahead of them. They also ignore the speed

of the subject vehicle attempting a lane change in calcu-

lating the safe distance. This leads to a very conservative

lane-changing model, especially for India, where lane-

changing behaviour is assumed to be much more aggres-

sive. Safe back gap gcbn , which is the gap between the

subject vehicle (attempting lane change) and the incoming

vehicle on the target lane, is calculated considering dis-

tances covered by the two vehicles, shown in Fig. 4. Here,

unlike the minimum following distance gcfn , where both

vehicles decelerate, the incoming vehicle n� 1 decelerates

while the subject vehicle n accelerates or maintains its

current speed on the target lane. Hence, the braking dis-

tance for the subject vehicle in Eq. 1 is replaced by the

total distance covered by the subject vehicle assuming it

maintains its current speed on the target lane. The

assumption that the subject vehicle maintains its current

speed on target lane would always give a safer back gap

compared to that determined based on the assumption that

the vehicle accelerates on target lane. Hence, replacing the

distance covered by leader vehicle with the distance cov-

ered by subject vehicle in Eq. 1 results in the following

equation:

gcbn ¼ trn�1 � vtn�1 þ
vtn�1

� �2

2dmax
n�1

� vtn
dmax
n

� vtn
� �

; ð3Þ

where trn�1 is the reaction time of the incoming vehicle,

dmax
n�1 is the maximum deceleration rate of the incoming

vehicle from back on target lane, vtn and vtn�1 are the speeds

of the subject and incoming vehicles, respectively, at time

t. For negative gcbn , its value is taken as the same as in

Eq. 2. Note, gcfn and gcbn are based on continuous equations

and then discretised. As the cell length is 0.5 m, which is

quite small compared to other CA model, some accuracy

loss during discretisation (rounding to nearing 0.5 value)

would not affect the model performance. The following

sections present the data collection effort and the imple-

mentation and validation of the PP-CA model.

3 Data collection

In Ludhiana city, Punjab, India, eight arterial roads, namely

(1) Chima Intersection–Samrala Intersection, (2) Chima

Intersection–Vishwakarma Intersection, (3) Jagraon Bridge–

Jalandhar Bypass, (4) Bharatnagar Intersection–Jagraon

Bridge, (5) Bharatnagar Chowk–Model Gram, (6) Bhaiwala

Chowk–Shastri Nagar, (7) Ludhiana Bypass and (8) Kundan

Vidya Mandir Lane, were selected for this traffic survey.

These roads were selected because of the availability of

vantage points for mounting cameras and variations in flow

among them. A total of 16 h of traffic surveys were con-

ducted using video-camera during peak (09:00–10:00) and

off-peak hours (12:00–13:00). Pedestrian foot-over bridges

were used to mount cameras as the locations provided a view

of a clear road stretch of 80 m. The perspective of this road

from the camera also suited the image processing software

used for data extraction (TRAZERTM). A rectangular trap of

60 m 9 7 m on the road was delineated in the beginning to

facilitate software calibration. Vehicles’ trajectories were

drawn in TRAZERTM, a video image processing software

developed by Kritikal Solutions Limited, India (www.

kritikalsolutions.com). Due to the software limitations, all

trajectories were manually marked to ensure accuracy. Fig-

ure 5 shows the marked vehicles in TRAZERTM. The

objectives of the study required accurate speed and gap

determination, and hence the accuracy of trajectories was

more important than the number of trajectories. Since each

hour of recording contained thousands of vehicles, this was

assumed to be enough for determining speeds and gaps
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statistically. Hence, it was decided to collect 2 h data on each

arterial in the first round and then collect more videos for

roads with high variability (if it existed). A regression

towards mean approach was used to determine the adequate

sample size on each road. More data would have been

unnecessary and expensive as each hour of data requires

more than a week if done manually and accurately. A total of

4,983 vehicle trajectories containing frame-wise x-y coordi-

nates of each vehicle on every 25th frame was created to

derive traffic flow characteristics. A flow chart explaining the

steps for data extraction is presented below.

3.1 Flow chart for extracting microscopic

characteristics

A MATLAB program was developed to extract traffic

characteristics such as individual vehicle speeds and gaps,

acceleration/deceleration, density, flow and total exposure

between vehicle types. Figure 6 shows a flow chart show-

ing the algorithm.

A detailed outline of the flow chart is presented below.

1. Input consists of x-y coordinates of vehicles, frame

IDs, vehicle IDs and vehicle type.

2. Determine the total flow as the number of vehicles

crossing the survey site per hour.

3. Determine the traffic composition based on the

proportion of different vehicle types in the total flow.

4. Determine the total road trap area as the product of

road width (7 m) and trap length in camera (60 m).

5. Determine the horizontal projection area for different

vehicle types based on their vehicular dimensions.

6. Create frame array for each frame ID consisting

trajectory array of all vehicles in that frame.

7. Create trajectory array for each vehicle ID by

grouping x-y coordinates based on vehicle IDs.

(a) Create fields within each trajectory array such

as ID, vehicle type, frame IDs, x and y coordi-

nates, length and width.

(b) Discard trajectories with less than two x-y

coordinates.

Fig. 5 Marking of vehicles in TRAZER software

1.Input

2. Calculate total 
flow

3. Calculate traffic 
composition

4. Calculate total 
road trap area

5. Calculate horizontal 
projection area for each 
vehicle type

7. Create trajectory array 
for each vehicle ID

6. Create frame array 
for each frame ID

8. Calculate area occupancy 
for each frame

9. Calculate lateral and longitudinal 
gaps for each vehicle

10. Determine the interaction rate 
between different vehicle types

11.Output

Fig. 6 Flow chart showing traffic flow characteristics extraction algorithm

Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with… 171

123J. Mod. Transport. (2017) 25(3):163–177



(c) Apply the moving average smoothing technique

to each trajectory.

(d) Calculate speed using the first and the last y-

coordinates in the trajectory and corresponding

frame ID. Each frame is 1 s apart from the

previous one.

(e) Calculate acceleration and deceleration using

speed differential for each trajectory.

8. Calculate area occupancy as the ratio of the total

projection area occupied by all vehicles in a frame

array to the total road trap area.

9. Calculate lateral and longitudinal gaps for vehicles

that overlaps along length and width, respectively, in

a particular frame.

(a) This is done for all frames in a particular

trajectory array.

(b) The lateral gap on any side (left or right) of a

vehicle is equal to the minimum of all gaps

maintained by that vehicle to other vehicle on

that side.

(c) For longitudinal gap, the two vehicles have to

be in the same frame and hence the maximum

gap is equal to trap length.

10. Determine the interaction rate between different

vehicle types by measuring the number and types of

vehicles involved in overtaking and car-following

based on their speeds and whether or not they have

lateral and longitudinal gaps. In this study, the

interaction rate between two vehicle types is defined

as the number of vehicles (say type A) found to be

following or overtaking (say type B) per 1,000

observed vehicles. A vehicle was considered to be

following if its path had at least 50% overlap with

that of the preceding vehicle along the direction of

movement (Fig. 7). This was determined from their

x-y coordinates provided by TRAZER. Since the

camera could only focus on 60 m of road length in

front of it, a vehicle having a longitudinal gap of

more than 60 m was not considered to be following.

Similarly, a vehicle was considered to be overtaking

only if it had a lateral overlap ([50%) with an

adjacent vehicle and its speed was more than that of

adjacent vehicles.

11. The output was stored in three dimensional arrays for

further processing.

4 Simulation setup

A MATLAB code was written to simulate a 7-m-wide two-

lane road of length 5,000 m and four vehicle types namely

HMVs, LMVs, 3Ws and 2Ws. As mentioned earlier, in CA

models, the road is represented by a lattice of uniformly

sized cells and the size of cells affects the computational

time and accuracy of the model. Finer cell sizes result in

higher accuracy as vehicular gaps and dimensions can be

represented more accurately but it is believed that this also

increases computational time as there are now more cells in

lattice that needs to needs to be processed by computer at

every time-step. However, authors believe that computa-

tional time is more dependent on the density of vehicles on

road, number of lanes and length of road to be simulated,

whereas cell size has less effect on computational time.

Hence, it was decided to adopt a size that can accurately

represent the smallest vehicular gap and dimension

observed in study. Since, in mixed traffic, the space

headway could be as little as 0.5 m during queues in jam

conditions and 2Ws are the smallest vehicles in the study

with a maximum width of 0.7 m, a lattice with a periodic

boundary condition consisting of 10,000 cells of size

0.5 m 9 0.7 m was used for simulation. The open

boundaries are usually not preferred as longer lattices are

required for various simulation phases. Further, as the

length of lattice increases, the number of vehicles to be

processed at each time-step also increases for a given

density. This increases computational time and still does

A B

C
D E

F

Lateral overlapping (<50%) Lateral overlapping (>50%)

Longitudinal overlapping (>50%)

Fig. 7 Lateral and longitudinal overlapping in vehicles
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not guarantee a steady state before measurements. All road

links were simulated using their traffic composition and

densities per kilometer as input. Measurements were taken

through a virtual detector of length 60 m in the middle of

lattice to replicate 60 m camera trap used in field and then

results were averaged at different occupancies. A total of

10 simulation runs were carried out with each run simu-

lating for 3,600 s using a resolution of 8 time-steps per

second. Hence, there were a total 28,800 (3,600 9 8) time-

steps in each simulation run. For each simulation run, the

first 800 time-steps were discarded as a warm-up to elim-

inate the initial noise. The simulated vehicular trajectories

were created to obtain characteristics such as individual

speeds, stream speeds, gaps, occupancies, proportion of a

vehicle type in car-following or overtaking. Vehicles do

not necessarily continue in the same lane, so in this study

car-following does not only represent vehicles in perfect

car-following, but also those having staggered car-follow-

ing [22] with some degree of lateral overlapping ([50%) in

the direction of travel as shown in Fig. 7. Since all eight

roads had the similar geometry, results can be attributed to

traffic flow characteristics.

5 Model validation

5.1 Validation of the model for fundamental

diagrams

Simulations were carried out at different area occupancies

(qa) to evaluate the proposed model with and without lane

preference rule. Figures 8 and 10 show graphs of flow

(q) and stream speed (v), respectively, with and without

position preference rule at different occupancies, b = 0

and safe/back gap calculated dynamically. Here, PCUs

represent passenger car units. In Fig. 8, the fundamental

diagram (q-qa plots) shows the expected parabolic shape

with the highest flow near-area occupancy value of 0.16

and 0.175 for cases without and with position preference

rules, respectively. The capacity was found to be higher

without preference rule due to the liberty of vehicles to

choose any position and thus utilise the road space opti-

mally, leading to the overestimation of flows at a given

occupancy level.

Thus, the proposed PP-CA model reproduces more

realistic capacities than the conventional CA model. Fig-

ure 9 shows the fundamental diagram (q-qa plots) of

observed and simulated values obtained using the PP-CA

model. The simulated values are averaged for area occu-

pancies and simulation runs. The speed-occupancy plot in

Fig. 10 shows the common trend with some noise around

the occupancy of 0.1 due to transition from free flow to

congested state. This is also evident from the q-qa plot in

Fig. 8. Figures 11 and 12 show plots of flow (q) and stream

speed (v) against area occupancy, respectively, for only car

scenario for different values of b with safe/back gap cal-

culated dynamically. It can be seen that as the value of b
increases from 0 to 10, the capacity and stream speed on

the road decrease. This is because at higher values of b, the
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vehicle has a lot more tendency to stick to the preferred

position/lane even if the adjacent lanes provide greater

longitudinal gaps. Hence, parameter b partially accounts

for the phenomenon of not travelling at desired speeds in

free flow conditions in case of some vehicles. Not much

difference is found when the b value increases from 10 to

20. This can also be verified from Figs. 13 and 14, which

shows that as the value of Dxavg increases from 0 to 9, the

stream speed and capacity also increase. In Figs. 13 and 14,

the plots represent cars only scenario for different values of

Dxavg and occupancies with position preference rule and

safe/back gap calculated dynamically. An increase in value

of b results in a decrease in value of Dxavg; which repre-

sents an increase in the tendency to stick to the vehicle’s

preferred lane. This results in a lower vehicular throughput

of traffic stream. Dxavg is the average difference between

preferred position and current/target position for any

vehicle type and is obtained from simulation by averaging

Dxn for all vehicles of a particular vehicle type. Note that

the difference is calculated in cells. Figures 11, 12 and 13

also show that the parameter b is only sensitive at lower

values of area occupancy (i.e. between 0.01 and 0.15).

5.2 Validation of the model for interaction rate

estimation

The aim of this study was to develop a PP-CA model to

determine interactions between vehicle types for the given

traffic flow conditions. Hence, this model was first vali-

dated using visual inspection and fundamental diagram (q-

qa) and then by comparing pair-wise simulated and

observed interactions between vehicles types. For esti-

mating interactions, whenever a vehicle was found to be

following or overtaking another vehicle, it was considered

to be interacting with that vehicle. Therefore, a vehicle in

measurement region can have 0, 1, 2 or 3 interactions based

on the type of vehicles and the minimum gaps to the sides

and front. If one vehicle is followed by another and at the

same time overtaken by the third, it would have two

interactions. Similarly, if there was only one vehicle in the

frame the number of interactions would be zero. Vehicles

travelling side by side (with overlap [50%) and having

different speeds were also considered to be involved in

overtaking even if the overtaking manoeuvre could not be

completed in the video. These interactions were grouped by

0

500

1000

1500

2000

2500

3000

3500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fl
ow

 (P
C

U
s/

h)

Area occupancy

   =0   =10  =20ββ β

Fig. 11 Relationship between area occupancy and flow for different

values of b and only car scenario using position preference based

modified CA model

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

St
re

am
 sp

ee
d 

(k
m

/h
)

Area occupancy

  =0    =10    =20β β β

Fig. 12 Relationship between area occupancy and stream speed for

different values of b and only car scenario using the PP-CA model

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6

St
re

am
 sp

ee
d 

(k
m

/h
)

Area occupancy

∆x(average)=9
∆x(average)=4
∆x(average)=0

Fig. 13 Relationship between area occupancy and stream speed for

different values of Dx (average) and only car scenario using the PP-

CA model

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5 0.6

Fl
ow

 (P
C

U
s/

h)

Area occupancy

∆x(average)=9
∆x(average)=4
∆x(average)=0

Fig. 14 Relationship between area occupancy and flow for different

values of Dx (average) and only car scenario using the PP-CA model

174 G. Pandey et al.

123 J. Mod. Transport. (2017) 25(3):163–177



vehicle types and expressed as the ratio of the number of

vehicles interacting to that observed for that vehicle type.

Here, vehicles with gap more than 60 m were not assumed

to be following. Similarly, the vehicles with longitudinal

overlaps were considered as overtaking or overtaken.

Video-graphic data were collected on eight locations as

discussed earlier. Since the objective of this paper was to

develop a microscopic model that can simulate interaction

rates between different vehicle types, the interaction rates

were determined for eight vehicle pairs, as shown in

Figs. 15 and 16. Eight locations generated a total of 64 data

points. Along with these interaction rates, other traffic

characteristics such as traffic composition, area occupancy,

vehicle-wise maximum speed and mean lateral position on

road were also measured for calibration of the model. The

simulations were carried out at different area occupancies.

Table 1 shows the parameters used in the model for sim-

ulation. The observed and simulated interaction rates for

different vehicle pair at different locations were compared

using paired sample tests. Kleijnen [23] suggested that the

student t test can be used to verify that the expected values

of xi and ui are equal. Then, t-statistic becomes

t-value =
d � d

sd � n�1=2
s

; ð4Þ

where d is the average of ns pairs of differences in xi and ui,

d is the expected value of d, sd is the estimated standard

deviation of d, and ns is the sample size. Since the mea-

sured 64 data points were not enough for assuming a

Gaussian distribution, Wilcoxon’s signed-rank test with

continuity correction was used instead of paired t test. This

resulted in a p-value of 0.19. Table 2 shows the results of

Wilcoxon’s signed-rank test and Pearson’s correlation

coefficient between observed and simulated interaction

rates, where V is the sum of ranks of positive difference in

the paired data and r is the Pearson’s product moment

correlation. We can see that the observed and simulated

medians are not significantly different.

In Table 1, the values of acceleration, po, pdec, pbl, plc
and interaction headway are adopted from previous study

[24], whereas values of other parameters were observed by

authors. Then, validation was carried out by checking for

positive correlation between the average simulated inter-

action rate Isi
� �

and the expected value of the observed

interaction rate Ioi
� �

. As suggested by Kleijnen, it is

important that the simulated mean increases if the observed

mean increases on any road. Hence, Pearson’s correlation

coefficient was calculated assuming that in a perfect model

the relationship between simulated and observed interac-

tion rates would be linear was found to be 0.75.

It was clear that there is a medium to high correlation

between observed and simulated means of interactions

rates. This means that as observed interaction rate increases

for any vehicle pair and traffic condition the simulated

interaction rate also increases.

6 Vehicular interaction rate simulation

This paper further explores the effect of area occupancy

(qa) of road on the amount of interaction between heavy

and light vehicle types. Simulations were carried out at

different area occupancies keeping vehicular proportion

equal for different vehicle types, and interaction rates were

measured for LMVs and other vehicle types. Similarly,

interaction rates were also measured between HMVs and
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other vehicle types. It was found that for all vehicle pairs

the interaction rate had a parabolic relationship with the

area occupancy, as shown in Figs. 15 and 16. Here the

interaction rate between two vehicle types was measured as

the number of vehicles of type A found to be interacting

(following or overtaking) with type B for every 1,000

simulated vehicles of type A found in measurement area.

For example, interaction rate for LMV–HMV would mean

the number of LMVs found following or overtaking HMVs

out of 1,000 LMVs observed in measurement area.

From Figs. 15 and 16, one can see that the interaction

rates increase rapidly with area occupancy in the beginning

and then decrease after a certain point. This is plausible as

at lower occupancies vehicles engage in both car-following

and overtaking instances while at higher occupancies the

number of overtaking instances reduces. The number of

car-following instances was not linearly related to area

occupancy. It can be assumed that car-following increases

in the beginning owing to the increase in area occupancy

on road. But as a particular vehicle can only be followed by

at the most two vehicles at a time in no-lane discipline

condition, the increase in car-following would not be as

significant at higher densities. This is not the case with

overtaking manoeuvres as overtaking possibility would

cease to exist at very high density. It was found that LMVs

had higher interaction rates with LMVs and HMVs because

they share the same lane, but had very low interaction with

3Ws as 3Ws travel farthest from the median lane. It was

also found that 3Ws had the lowest interaction rate with

heavier vehicles such as HMVs and LMVs. This could be

one of the reasons for low fatality rate among 3Ws as

observed. HMV–HMV interaction rates were not analysed,

as there were not many HMV–HMV interactions found in

field data and hence cannot be validated.

7 Conclusions

This paper attempts at extending the brake light model to

heterogeneous driving behaviour by proposing more real-

istic longitudinal and lateral movement rules. It considers

the effect of position preference of different vehicle types

and proposes a modified CA model, position preference

based CA (PP-CA) model. This model also attempts to

replicate the driving pattern observed on urban arterials in

Ludhiana. The average lateral positions obtained by the

Table 1 Values of the parameters used in simulation

Parameter 2Ws 3Ws Cars (LMVs) Trucks (HMVs)

Length (cells) 4 6 7 25

Width (cells) 1 2 3 4

Maximum speed (cells/s) 38 22 36 36

Acceleration at speed\5.5 m/s (cells/s2) 5 2 4 2

Acceleration at speed of 5.5 and 11 m/s (cells/s2) 4 2 3 1

Acceleration at speed[11 m/s (cells/s2) 3 1 2 1

Maximum deceleration (cells/s2) 13 10 16 7

po 0.3 0.4 0.4 0.6

pdec 0.3 0.3 0.2 0.1

a 1.5 1.5 1.5 1.5

b 2 10 3 10

pbl 0.94 0.94 0.94 0.94

plc 0.5 0.5 0.5 0.5

Preferred position (cells from shoulder) 3 2 5 7

Interaction headway (s) 6 6 6 6

Table 2 Results of test of difference in median lanes and Pearson’s

correlation coefficient between observed and simulated interaction

rates

Observed Simulated

Min 0 0

Median 123 116

Max 449 370

Wilcoxon’s signed-rank test

p-value: 0.19

V: 316

Pearson’s correlation coefficient

r: 0.75

t-value: 6.6

DOF: 34

p-value: 1.38 9 10-5

95% confidence interval: 0.55 and 0.86
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proposed models were more consistent with the observed

values than those obtained by Ma–Ra model. The new

position preference parameter (b) was found to have a

significant effect on flow and stream speed. This paper also

demonstrates the use of interaction rate between vehicle

pair as an alternate method to validate the microscopic

traffic flow models which, otherwise, used to be validated

through fundamental diagrams or individual vehicle tra-

jectories. The interaction rate between vehicles plays a

significant role in determining the crash propensity on that

road. Vehicles that share the same lane have relatively

higher interactions and hence higher crash propensity than

those that are segregated by barriers, median or divider.

The results of simulation showed that there was a signifi-

cant relationship between area occupancy, vehicular pro-

portion and interaction rate between them. The higher

interaction rates between vehicle pairs namely HMV-2W

and LMV-2W may be the cause of higher fatal crashes

between these two pairs as commonly observed in devel-

oping countries. This study thus provides fresh impetus to

the risk analysis modelling using microscopic traffic flow

models.
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