
Review

The arc of scientific thought and practice for 
the past several centuries has followed a defi-

nite reductionist paradigm. With the break-

throughs in molecular biology during the lat-
ter half of the 20th century, biological sciences 
have joined this trend, with functions attrib-

uted to proteins, amino acid sequences and 
motifs. However, each gene typically encodes 
several distinct proteins, whose functions can 
vary depending upon the stage of development 
of the organism, the location within the body 
and other environmental factors. The effect 
of a drug on a living organism involves com-

plex interactions at vastly different spatial and 
temporal scales, from the molecular and cel-
lular levels to those at the level of the tissue, 
organ and the organism itself. A fundamental 
understanding of complex biological systems 
is, thus, one of the grand challenges in science 
of the 21st century. Recent decades have seen 
the advent of robotic high-throughput bioassays 
and an increasing availability of whole genome 
sequences. This capability and the realiza-

tion that there is no guarantee of emergence 
of higher level functions from a study of indi-
vidual molecular-level components have led to 
a transition from the study of functions of indi-
vidual genes, proteins and molecular SARs, to a 
systems-level view of biology and biochemistry. 
Systems biology is the study of an organism, 
viewed as an integrated and interacting network 
of genes, proteins and biochemical reactions. 
In this view, a structure–function relationship 

is no longer associated with a specific ligand 
or biological target, but with the flow of infor-
mation through this integrated cellular net-
work. Protein–protein interaction networks 
may be associated with specific disease effects 
and drug responses, since many diseases are 
caused by disruption of normal protein inter-
actions, disruption of protein–DNA interac-

tions, or formation of new undesirable protein 
interactions.

Analogous to biological structure–function 
relationships, SAR in cheminformatics are 
commonly envisioned in a high-dimensional 
space of numerical descriptors of molecular 
structure (commonly referred to as chemistry 
space). A similarity network in chemistry space 
consists of a pair-wise similarity relationship 
(an edge or connection) between individual 
molecules (forming the nodes of the network). 
An example is the network-like similarity graph 
(FiguRe 1) introduced by Bajorath and co-work-

ers [1]. Local neighborhoods in this space cor-
respond to regions of structural similarity. In 
reaction networks, the connections between 
molecules represent some measure of the reac-

tion connecting them. For instance, a meta-

bolic network can be constructed for bacteria, 
archaea and eukaryotes, with the nodes repre-

senting metabolites and the edges representing 
biochemical reactions for which one metabolite 
is a substrate and the other a product [2]. Such 
networks have a modular structure with most 
of the nodes connected only to other nodes 

Graphs and networks in chemical and 

biological informatics: past, present and future

Chemical and biological network ana lysis has recently garnered intense interest from the perspective of drug 

design and discovery. While graph theoretic concepts have a long history in chemistry – predating quantum 

mechanics – and graphical measures of chemical structures date back to the 1970s, it is only recently with the 

advent of public repositories of information and availability of high-throughput assays and computational resources 

that network ana lysis of large-scale chemical networks, such as protein–protein interaction networks, has become 

possible. Drug design and discovery are undergoing a paradigm shift, from the notion of ‘one target, one drug’ 

to a much more nuanced view that relies on multiple sources of information: genomic, proteomic, metabolomic 

and so on. This holistic view of drug design is an incredibly daunting undertaking still very much in its infancy. 

Here, we focus on current developments in graph- and network-centric approaches in chemical and biological 

informatics, with particular reference to applications in the fields of SAR modeling and drug design. Key insights 
from the past suggest a path forward via visualization and fusion of multiple sources of chemical network data.

N Sukumar*1,2† 

& Michael P Krein3†

1Department of Chemistry, Shiv Nadar 
University, Chithera, Dadri, 203207, 
India 
2Department of Chemistry & Chemical 
Biology, Rensselaer Polytechnic 
Institute, Troy, NY 12180, USA 
3Lockheed Martin Advanced 
Technology Laboratories, 3 Executive 
Campus, Suite 600, Cherry Hill, 
NJ  08002 USA 
*Author for correspondence: 
E-mail: n.sukumar@snu.edu.in

†Authors contributed equally

2039ISSN 1756-891910.4155/FMC.12.128 © 2012 Future Science Ltd Future Med. Chem. (2012) 4(16), 2039–2047

For reprint orders, please contact reprints@future-science.com



within their respective modules. Metabolites 
participating in only a few reactions, but con-

necting different modules, are found to be more 
strongly conserved than hubs whose links are 

mostly within a single module. Similarly, net-
work topological analyses strive to assign mean-

ing to global and local descriptions of network 
structure.
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Figure 1. Similarity graphs for six classes of enzyme inhibitors. (A) lipoxygenase, (B) cyclooxygenase-2, (C) coagulation factor 
Xa, (D) protein farnesyltransferase, (E) squalene synthase and (F) thrombin. Nodes represent molecules, with edges between them if 
the pairwise MACCS Tanimoto similarity is greater than 0.65. Nodes are color-coded according to potency using a continuous 
spectrum from green (lowest potency) to red (highest potency) and scaled according to their local compound discontinuity scores. 
COX: Cyclooxygenase-2; FAR: Protein farnesyltransferase; FXA: Coagulation factor Xa; LIP: Lipoxygenase; SQA: Squalene synthase; 
THR: Thrombin. 
Reproduced with permission from [1].
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Key Terms

Systems biology: Study of an 
organism, viewed as an 
integrated and interacting 
network of genes, proteins and 
biochemical reactions.

Reduced graphs: Summary 
representations of chemical 
structures generated by 
collapsing groups of connected 
atoms into single nodes while 
preserving the topology of the 
original structures.

Degree distribution: 
Probability that a specified node 
has exactly a given number of 
links.

Degree of a node: Number 
of links between it and other 
nodes.

Scale-free networks: 
Characterized by a power-law 
degree distribution: the 
probability that a node has k 
links follows P(k) ~k-g (seen as a 
straight line on a log–log plot). 
The properties of a scale-free 
network are often determined 
by a relatively small number of 
highly connected nodes (hubs); 
the average path length of such 
a network follows a log log N 
distribution (where N is the 
number of nodes).

Domain of applicability: 
Physicochemical, structural or 
biological space that has been 
used to train the model and 
within which the model may be 
reliably applied to make 
predictions for new molecules.

Global network topology & its visual 
representation
Network representations of biology and chem-

istry allow for succinct quantitation and visu-

alization of relationships between data, and 
are, thus, well-rooted in scientific history. In 
biology, the branching Tree of Life can be 
traced back to Jean-Baptiste Lamarck’s 1809 
publication Philosophiezoologiqueou Exposition 
des Considerations Relatives l’ histoire Naturelle 
Desanimaux and internationally popularized 
in Charles Darwin’s 1859 work On the Origin 
of Species. Similarly, in chemistry, graph rep-

resentations of molecular structure date back 
to the connection diagrams in Kekule’s 1857 
descriptions of the tetravalence of carbon 
(Über die s. g. Gepaarten Verbindungen und 
die Theorie der Mehratomigen Radicale) and 
his now famous 1865 work that described 
the structure of benzene, Sur Laconstitution 
des Substances Aromatiques. Collapsing con-

nected atoms into single nodes generates 
what are known as reduced graphs (FiguRe 2) 

[3]. Many different graph reduction schemes 
have been developed for similarity searching 
[4], the objective being to enable compounds 
sharing the same activity but belonging to dif-
ferent 2D scaffolds to be perceived as similar. 
Such reduced graphs function as topological 
pharmacophores, complementing traditional 
molecular descriptors and offering the poten-

tial for scaffold hopping. Reduced graphs have 
been used in applications ranging from chemi-
cal patent searches to identification of SARs 
and clustering of high-throughput screening 
data [5]. The reduced graph representation ena-

bles heterogeneous compounds, such as those 
found in high-throughput screening data, to 
be captured in a single representation with the 
resulting query encoding SARs in a readily 
interpretable form [6].

Graph theory permeates modern computa-

tional chemistry and biology, where connection 
tables – lists of atoms and lists of the bonds 
that connect them – commonly represent struc-

tures. Adjacency or distance matrices – matrix 
representations of graph structure – are pro-

duced by systematic comparison of biological 
or chemical entities, where every element in a 
data set is compared with every other element 
via a similarity assessment metric. A common 
global measure of a network is the degree 

distribution. The degree of a node is the 

number of links between it and other nodes; 
the degree distribution P(k) is the probability 

that a specified node has exactly k links. Scale-

free networks are characterized by a power-law 
tail in the degree distribution: the probability 
that a node has k links follows P(k) ~k-g (seen 
as a straight line on a log–log plot). Krein and 
Sukumar investigated the network topology 
and scaling relationships of several chemistry 
spaces, which showed qualitatively similar 
behavior, following power law degree distribu-

tions, indicating the small-world nature of the 
corresponding networks [7]. The small-world 
behavior of chemistry spaces has also been 
noted by other authors [8,9]. 

The properties of a scale-free network are 
often determined by a relatively small number 
of highly connected nodes (hubs). Disabling 
even a substantial number of nodes in a scale-
free network does not lead to fragmentation of 
the network. Thus, such networks are char-
acterized by topological robustness; they are 
robust against accidental failures because ran-

dom failures affect mostly the many nodes of 
low degree and do not disrupt the network’s 
overall integrity. However, this reliance on hubs 
in a scale-free network carries a cost, in that it 
implies vulnerability to targeted attack against 
a few key hubs. In chemistry space, hubs are 
represented by molecules with high leverage 
in a SAR. Such molecules are important for 
maintaining the diversity of a chemical library 
and for ensuring good predictive performance 
of QSAR models across a wide domain of 

applicability, that is, across different molecular 
scaffolds.

Genes and gene products constitute a com-

plex network of interactions. In such biologi-
cal networks, nodes may represent genes, gene 
products, drugs, proteins, phenotypes, or 
metabolites, and the edges may represent inter-
actions or co-occurrence of phenotypes. The 
small-world topology of protein residue net-
works has been convincingly demonstrated [6–8] 

– here, the amino acid residues are the nodes 
of the network and two residues are connected 
if they are closer than a certain distance cut-
off. Analysis of the networks of DNA-binding 
proteins [10] – where the edges between amino 
acid residues are determined by the strengths 
of the non-covalent interactions between them 
revealed a strong correlation between the posi-
tions of the residues interacting with DNA 
and highly connected hubs(these are amino 
acid residues making connections with a large 
number of other residues). Protein residue net-
works have been found to exhibit the universal 
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topological characteristics [11] of modular net-
works consisting of several interconnected clus-
ters. These clusters are separated by topological 
voids that represent protein binding sites.

In an excellent review, Fliri et al. have shown 
the limitations inherent in current drug design 
and discovery: the one-target, one-drug per-
spective has led to a lengthy and costly dis-
covery route plagued with late-stage failures 
[12]. These limitations may be mitigated by a 
better understanding of the cause–effect rela-

tionships, the interplay of biology at different 
length and time scales. Protein–protein interac-

tion network models have been widely explored 
in their capacity for cause–effect analyses in 
medicine. In protein-interaction networks 
[13,14], hubs represent highly connected proteins. 
Recent years have seen a shift from traditional 
receptor-specific studies to a cross-receptor view 
[15,16] of protein–drug interactions. While simi-
lar ligands may bind to similar targets, ligands 

quite frequently have affinity for more than one 
target [17,18]. Different proteins may have dif-
ferent sequences or folds and yet have similar 
binding partners. Thus, ligands that would oth-

erwise be considered dissimilar by commonly 
used ligand-similarity detection algorithms 
can bind on to the same target [19,20]. This has 
led to the study of protein–target-based net-
works that identify related targets by compar-
ing their binding sites [7,20,21], hence estimating 
the potential for cross-reactivity between the 
corresponding ligands. This multidimensional 
view of related targets is further complicated by 
the notion that our knowledge and representa-

tion of individual targets is incomplete, leading 
to gaps in the structure–activity landscape.

Representation & exploration of 
activity cliffs
An activity landscape is a graphical represen-

tation that integrates similarity and potency 
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Figure 2. Series of 5HT
1A

 agonists and their reduced graph representations. The first two molecules are both represented by the 
same reduced graph. The reduced graphs of the second pair of molecules differ in the substitution of an aliphatic acceptor node for an 
acyclic acceptor node. The reduced graphs of the last pair differ by the insertion/deletion of a linker node.  
See Table 1 in [6] for the key to graphical representations. 
Reproduced with permission from [6].

Key Terms

Activity cliffs: Rugged region 
of chemistry space where pairs 
of structurally similar molecules 
have large differences in 
potency.

Similarity principle: Holds 
that similar molecules should 
exhibit similar activities in 
biological assays.

Structure–activity 
landscape index: 
Quantitative measure of the 
ruggedness of an activity 
landscape, given by the absolute 
difference in activities between 
a pair of molecules divided by 
their dissimilarity coefficient. 
Two compounds are connected 
by a structure–activity 
landscape index edge if their 
structure–activity landscape 
index score exceeds a given 
threshold value.
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relationships between molecules for a specific 
biological target. Activity cliffs are formed by 
pairs of structurally similar molecules with 
large differences in potency. One can also 
define selectivity cliffs between a pair of mol-
ecules that have significantly different potencies 
against one or both targets of a pair. Mechanism 
cliffs are formed when small structural modifi-

cations induce a transition from one molecular 
mechanism to another in an analogous series.

Conventional QSAR relies on the similar-

ity  principle, which holds that similar mol-
ecules should exhibit similar activities in 
biological assays. It is now well recognized 
that very similar molecules may exhibit very 
different activities in some assays, leading to 
‘activity cliffs’ and deviations from the simi-
larity principle. Such discontinuities or cliffs 
in the structure-activity landscape are mapped 
as structure–activity landscape index (SALI) 
networks that highlight abrupt changes in 
biological activity associated with the steepest 
cliffs [22]. In SALI graphs, nodes are molecules 
and edges represent activity cliffs of varying 
magnitude. SALI is defined by the expression:

SALI
1 sim[i, j]

A A
i,j

i j
=

-

-; ;

^ h
equation 1

whereA
i
 and A

j
 are the activities of the ith and 

the jth molecules, and sim(i,j) is the similarity 
coefficient between the two molecules. Two 
compounds are connected by a SALI edge if 
their SALI score exceeds a given threshold 
value. Edges are depicted as arrows directed 
toward the more potent compound (FiguRe 3). 
Identifying the locations of activity cliffs in a 
structure activity landscape through SALI map-

ping can improve our understanding of where a 
QSAR model is more or less accurate, especially 
the ability of the model to correctly predict the 
relative ordering of activities. A plot of the SALI 
value versus the normalized similarity threshold 
is known as the SALI curve. While a SALI net-
work graph orders pairs of molecules by activ-

ity, the SALI curve tallies how many of these 
orderings a model is able to predict. The value 
of the SALI curve at zero similarity threshold 
measures the ability of the model to capture all 
of the edges, while the value at a normalized 
similarity threshold of unity measures its ability 
to correctly identify the most significant activity 
cliffs. The integral of the SALI curve is another 
useful measure of the performance of a model 
that rank orders molecules by activity.

The presence of activity cliffs in a structure–
activity landscape necessitates hands-on data 
visualization and statistical ana lysis [23]. Other 
measures to characterize activity cliffs include 
SAR indices (SARI) [24] and SAR Maps [25]. The 
SARI is a composite index, a combination of a 
continuity score and a discontinuity score:

SARI = (score
cont

 + [1 - score
disc

])

equation 2

These are, in turn, constructed from normalized 
sums of local continuity and discontinuity scores:

cont(i)
1 sim[i, j]
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equation 3
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equation 4

disc(i)
(j sim[i, j] > 0.65, i j

( A A sim[i, j])i j
(j sim[i,j]>0.65,i j)

=
-

!;

; ;
!;

/

equation 5

with A
i
 and A

j
 being the potencies of i and j. A 

molecule has a high discontinuity score (near 
unity) if its potency differs significantly from 
those of its immediate structural neighbors. 
Such pairs of structurally similar compounds 
with significantly different potencies mark activ-

ity cliffs. In contrast, SARI locates structurally 
divergent compounds having similar activity.

Much coverage has been dedicated to the 
quantification and visualization of activity cliffs 
[26,27]. In practice, one can use this activity cliff 
information as a measure of model perform-

ance [28]. Several studies have noted the impor-
tance of training set selection in determining 
overall model quality and, thus, these activity 
cliff measures may help guide model building 
efforts [29]. Furthermore, this information may 
be mined to explore just how catastrophic the 
effect of an activity cliff would be on QSAR 
model performance [25], that is, the degree to 
which local predictivity is indicative of the 
global performance of the model.

Large activity cliffs are not uncommon and 
have been found to be comparably distributed 
over different target classes. Namasivayam 
et al. found that in a number of cases, model 
continuity was preserved near activity cliffs, in 

Key Terms

Structure–activity 
landscape index curve: Plot 
of the structure–activity 
landscape index curve value 
versus the normalized similarity 
threshold.

SAR indices: Composite 
index, formed from a 
combination of a continuity 
score and a discontinuity score, 
is another quantitative measure 
of the topography of an activity 
landscape.
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the sense that local SAR continuity and dis-
continuity can occur together in a structure–
activity neighborhood [30]. Thus, cliffs need 
not be black holes of model prediction quality. 
Dimova et al. examined activity cliff informa-

tion over multiple targets [31]. These multitarget 
activity landscapes identify single-, dual- and 
triple-target activity cliffs and hierarchical cliff 
distributions.

This information is only as useful as it is 
interpretable to the end user; consensus views 
of activity cliff information [32] seek activity 
cliffs present over multiple structure represen-

tations. Overlaying this activity cliff informa-

tion over data sets could be useful in compar-
ing structure representations within a data set, 
leading to local decisions in modeling choices. 
Mapping the locations of activity cliffs and 
comparing the global characteristics of SALI 
sub-networks with those of the underlying 
chemistry space networks generated from dif-
ferent molecular fingerprint or descriptor rep-

resentations [7] can guide the modeler in the 
choice of an optimal representation of the data. 
A higher local density of SALI edges with a 
particular representation in a specific region 
of chemistry space implies a more challenging 
SAR using that fingerprint. Conversely, Wawer 
and Bajorath have designed a methodology for 
large-scale SAR ana lysis that directly accounts 
for structural relationships between active 

compounds, without relying on numerical 
compound similarity assessment [33].

Bon and Waldmann recently examined 
hierarchical structural relationships between 
compound classes and structural similarities in 
ligand-sensing protein cores [34]. By looking at 
chemical and biological space in tandem, they 
demonstrated a methodology, biology-oriented 
synthesis, that led to the prospective identi-
fication of new targets of known biologically 
active compound classes and to the design of 
compound libraries.

In a similar manner, Klenner et al. have 
used stochastic proximity embedding to rap-

idly and automatically identify and visualize 
areas of interest, or ‘activity islands’ in chemi-
cal space [35]. They successfully applied stochas-
tic proximity embedding and found inhibi-
tors of Helicobacter pylori protease HtrA with 
new molecular scaffolds. This drug-discovery 
exercise was led by visualization, minimizing 
experimental effort and costs.

These improvements to data set visualiza-

tion are critical in the workflow of drug design 
and discovery, representing a future view of 
the field.

Future perspective
The success and widespread acceptance of 
the systems view of chemical and biological 
spaces hinges on the ability to relate relevant 

9

1

2

6

17 15 13 12

40 25

21

24

22

52 65

29 35 38

37

42 56 58 66

43 45 49 54 59 63

44 46 50 55 60 62

57

28

64

4119 23 39

5

4

3

8

Figure 3. Graph representation of the structure–activity landscape index. An edge occurs 
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Executive summary

Background

�� The field of drug design and discovery is shifting from single-target studies to systems-wide approaches. Computational methods that 

deal with the resulting information explosion are being developed. 

Global network topology & its visual representation

�� Network types and network visualization approaches are covered; findings of protein–protein interaction network studies are discussed. 

Representation & exploration of activity cliffs

�� SARs, their utility and implications of their breakdowns, known as activity cliffs, are discussed.  Quantification of a SAR’s structural 

features to assess SAR performance is reviewed.

The future: linking of chemical & biological spaces

�� Repositories that utilize experimental metadata to link multiple sources of information and tools that mine these repositories enables the 

leap from single-target to systems-wide approaches.

information from multiple sources. Widespread 
usage of computer-readable structural formats 
allowed for the initial growth of publicly 
accessible data repositories, such as PubChem, 
BindingDB, ChEMBL and Chembank. 
Efficient mining of these databases’ metadata 
is beginning to make an impact upon scientific 
practice. Semantic representations of biological 
data have proven their utility and are now fairly 
ubiquitous. For instance, Jenssen et al. created 
the PubGene database by automated knowl-
edge extraction from the titles and abstracts 
of millions of publicly available MEDLINE 
records [36]. This enabled creation of a gene-
to-gene co-citation network of the thousands of 
named human genes. The associations between 
genes were annotated by linking genes to terms 
from the Medical Subject Heading index and 
from the Gene Ontology database [37,101], the 
assumption being that if two genes are men-

tioned in the same MEDLINE record, then 
there must be an underlying biological relation-

ship between them. The use of prior informa-

tion extracted from biomedical literature and 
protein–protein interaction data sets has been 
found to improve the ability to learn biologi-
cally realistic networks from gene expression 
data [38].

The drug target network developed by 
Yildirim et al. [39] used all known US FDA-
approved drugs and their targets from the 
DrugBank database [40] to construct a bipar-
tite graph of protein–drug interactions, where 
a drug and a protein were connected to each 
other if the protein was a known target of the 
drug. Two network projections were generated 
from this graph, one whose nodes represented 
drugs and the connections a shared target pro-

tein; and a complementary network whose 
nodes were proteins, which were connected to 
each other if they were targeted by a common 

drug. Although constructed independently of 
any knowledge of drug classes, the drug sub-
network naturally clustered drugs by major 
therapeutic classes. Integrating DrugBank 
with protein–protein interaction data and the 
Online Mendelian Inheritance in Man™ data-

base showed that drugs were more likely to act 
within co-expressed modules and were enriched 
in specific regions of the human disease net-
work. Analysis of experimental drugs showed 
that the vast majority of new drugs targeted 
well-known proteins. The ana lysis also revealed 
a recent gradual trend of drugs targeting more 
diversified proteins, with a greater tendency for 
promiscuity.

In the future, the scope and accessibility of 
such observations will broaden with the matu-

ration of semantic representations of chemical 
and biological information, driven by commu-

nity acceptance of standardized data formats 
and open access to data [41–43]. The ubiquity of 
community-designed tools that build on such 
relationships will be rooted in the economics of 
cloud computing, which enable public access 
to large data-mining capabilities. Relatively 
inexpensive access to tools and data will drive 
efficiency and allow us to tackle the challenges 
of designing new drugs and repositioning exist-
ing drugs using a more holistic, systems-level 
approach to biochemistry.
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