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Abstract. We show in this paper that the basic representations of position and momentum in
a quantum mechanical system, that are guided by a generalized uncertainty principle and lead to
a corresponding one-parameter eigenvalue problem, can be interpreted in terms of an extended
Schr̈odinger equation embodying momentum-dependent mass. Some simple consequences are
pointed out.

1. Introduction

The general theory of relativity (GTR), whose character is completely classical, and quantum
mechanics, which accounts for the properties of atomic and sub-atomic particles but excludes
the effects of gravity, are two definitive pillars of twentieth century physics. To unify them
requires tuning to the Planck scale. In such a situation, for a particle of mass m, the size of the
radius of curvature of the spacetime is roughly of the same order as its Compton wavelength. It
is simple to derive the connecting relation which reads

m ≈ mP

√
π, (1)

where mP denotes the Planck mass.
Furthermore, as is well-known, if the linear dimension of the mass m is less than the

corresponding Schwarzschild radius, the mass mimics a black hole. It follows that the global
length measurement uncertainty δX must exceed the Schwarzschild radius favoring the inequality

∆X ≥ κGmc
c3

, (2)

where the quantity κ is a dimensionless parameter of order unity. The exact value of κ depends
on the choice of a specific model.

A stronger inequality has the form ∆X ≥ Gγ∆P
c3

which can be recast to

∆X ≥ γl2P
∆P

~
, (3)
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where ∆P stands for the complementary linear momentum uncertainty and lp is the Planck
length. Combining with the standard Heisenberg’s uncertainty principle (HUP), which states
that for certain pairs of complementary variables, such as the position and momentum, one
cannot have an exact knowledge of both the variables simultaneously, one has the following
form of the generalized uncertainty principle (GUP)

∆X∆P ≥ ~
2

(1 + τ∆P 2) (4)

in one dimension where the deformation parameter τ =
2γl2P
~2 > 0. In arriving at (4) a modified

form of the quantum condition is used namely,

[X,P ] = ~(1 + τP 2), (5)

to lowest order in τ .
In the framework of GUP a minimum position uncertainty is implied which is of the order

of the Planck length. However there is no minimum momentum uncertainty. Note that the
conventional Heisenberg’s uncertainty principle is recovered from (4) when the parameter τ
vanishes. τ is a dimensional quantity being same as that of the inverse squared momentum. For

an optical fibre, a typical value of τ is 1056( s2

Kg2m2 ).

GUP which is a modification of the Heisenberg’s uncertainty principle, in that it takes into
account plausible corrections to the latter, precludes any localization in space as is implicit in the
case in the Heisenberg’s relation. There are many derivations of GUP existing in the literature.
In fact, a considerable amount of work has been devoted towards justifying the viability of having
different variants of GUP in problems of minimal length in quantum gravity and string theory
(see, for example, [1–9]). In the former case the existence of a minimal length is imperative due
to an effective minimal uncertainty in position while in the latter, because of the existence of a
characteristic length of the strings, it is impossible to improve upon the spatial resolution below
a certain point.

In a general setting the following result [10, 11] was obtained for the commutator [X,P ]
undergoing a q-deformation

[X,P ] = i~
[
1 +

i~
4

(q2 − 1)(
X2

a2
+
P 2

b2
)

]
, (6)

where a and b are some real constants and the constraint ab = 1
4(q2 + 1) has been taken into

account. Adopting for the deformation parameter q the exponential form q = e2τb2 , the limit
b→ 0 yields (6).

As noted in [10], the following explicit representations for X and P

X = i~(1 + τp2)∂p, P = p (7)

solve (5), where p along with x fulfill the HUP

[x, p] = i~. (8)

Let us focus on the simplest case of the harmonic oscillator Hamiltonian which reads (setting
m = ~ = 1)

H =
1

2
[P 2 + ω2X2]. (9)
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Inserting the representations (7) in (9) produces the following stationary state Schrödinger
equation

φ′′(p) +
2τp

1 + τp2
φ′(p) =

1

(1 + τp2)2
[µ2p2 − λ2]φ(p), (10)

where φ(p) is the wave function expressed in terms of p and the primes denote derivatives with
respect to p. In terms of the energy E the quantities λ and µ stand for

λ =
2E

ω2
, µ2 =

1

ω2
. (11)

It is needless to say that the standard equation for the harmonic oscillator is recovered when
τ → 0. Equation (10) is similar to the one derived by Conti [12] in the context of non-paraxial
setting [13] by assuming a specific form of the nonlinear wave equation.

In the operator version defined by X = ( 1
2ω )

1
2 (η + η†), P = i(ω2 )

1
2 (η† − η), the harmonic

oscillator Hamiltonian (9) takes the usual form H = ω(η†η + 1
2). For the non-Hermitian

counterpart Swanson [14] proposed the following choice

H(α,β) = ω(η†η +
1

2
) + αη2 + βη†, (12)

where ω, α, β are real while ω̄ ≡
√
ω2 − 4αβ > 0 and α 6= β [15]. H(α,β) thus translates to

H(α,β) = (ω − α− β)
P 2

2ω
+ (ω + α+ β)

ω

2
X2 +

1

2
(ω + α− β)XP − 1

2
(ω − α+ β)PX +

ω

2
.

(13)

It supports the modified energy eigenvalues En = (n + 1
2)ω̄. Evidently (13) moves over to (9)

when α = β = 0.
By using the pair of representations (7), the corresponding time-independent Schródinger

eigenvalue equation turns out to be

ω(ω + α+ β)φ′′(p) +
2p

1 + τp2
[ω(ω + α+ β)τ + (α− β)]φ′(p)

= [
(ω − α− β

ω
− (ω + α− β)τ

)
p2 − (2E + α− β)

)
]

φ(p)

(1 + τp2)2
. (14)

In the following our endeavor would be to interpret (10) and (14) in the framework of a
τ -induced momentum-dependent mass (MDM) effective Schrödinger equation for it.

2. The analogue MDM connection

First, a few words about the coordinate-dependent mass picture in the configuration space
that has been studied widely in the literature [16–26]. The interest in such systems stem
essentially from the physical problems underlying compositionally graded crystals [27], quantum
dots [28], liquid crystals [29] etc. Likewise, a MDM scenario has also found relevance in certain
quantum mechanical problems such as in the quantization of a parity-symmetric Liénard type
nonlinear oscillator [30] and also in classical problems possessing quantum analogs, for example,
in branched Hamiltonian systems [31,32].

Many years ago, von Roos [16] formulated a general strategy of writing down an effective-

mass kinetic energy operator T̂ . For instance if the mass function depends on the momentum
then T̂ would depend on the two-parameter form (with ~ = 1)

T̂ =
1

4
[ma(p)x̂mb(p)x̂mc(p) +mc(p)x̂mb(p)x̂ma(p)], (15)
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where x̂ is the coordinate operator, m(p) is a momentum dependent mass and the ambiguity
parameters a, b and c are constrained by the equality (a+ b+ c) = −1.

For the conventional quantum condition [x̂, p̂] = i~, a suitable operator for x̂ is [i∂p] in the

momentum space. In this case the above expression of T̂ is converted to the following expression
for the time-independent Schrödinger equation

−1

4
[ma(p)

d

dp
mb(p)

d

dp
mc(p) +mc(p)

d

dp
mb(p)

d

dp
ma(p)]ψ + V (p)ψ = Λψ, (16)

where V (p) stands for the general choice of a momentum-dependent potential and Λ is the
energy.

Employing a dimensionless mass function M(p) through enforcing the relation

m(p) = m0M(p), (17)

where 2m0 = 1, the identity

Ma d

dp
M b d

dp
M b +M c d

dp
M b d

dp
Ma

=
d

dp

1

M(p)

d

dp
− (b+ 1)

M ′′

M2
+ 2([a(a+ b+ 1) + b+ 1]

M ′2

M3
(18)

makes a short work of (16) casting it to a very tractable form

[− d

dp

1

M(p)

d

dp
+ Veff (p)]φ(p) = Λφ(p) (19)

in the presence of an effective potential Veff (p) where

Veff (p) = V (p) +
1

2
(b+ 1)

M ′′

M2
− [a(a+ b+ 1) + b+ 1]

M ′2

M3
. (20)

If we compare (19) with the GUP influenced oscillator equation (10), we immediately infer
that it can be recognized as an analogue momentum-dependent mass equation which transforms
similar to (16), the mass behaving like a momentum-dependent quantity. Indeed corresponding
to (10) the momentum-dependent mass M(p) reads explicitly

M(p) = (1 + τp2)
−1
, (21)

which is independent of the ambiguity parameters a, b, c. A graphical display is shown in Figure
1. Evidently it is singularity free. Such a profile has been studied in [20] in a different context.
It is clear that M(p) approaches a zero-value asymptotically with respect to p. The MDM works
in the presence of the τ -dependent effective potential Veff (p)

Veff (p)− Λ =
1

1 + τp2
(µ2p2 − λ), (22)

where Λ is some constant quantity.
Turning to the more elaborate form (14), the corresponding quantities for M(p) and Veff are

M(p) = (1 + τp2)
−

[
1+ α−β

ωτ(ω+α+β)

]
(23)
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Figure 1: M(p)

and

Veff (p)− Λ =

[{
ω − α− β

ω
− (ω + α− β)τ

}
p2 − (2E + α− β)

]
[

(1 + τp2)
−2+

[
1+ α−β

ωτ(ω+α+β)

]
ω(ω + α+ β)

]
(24)

The trend of the mass profile is similar to Figure 1 because τ acts as a huge damping factor.
From the point of view of the intertwining relationship [17]

AH = H1A, (25)

where H and H1 share the same kinetic energy term with H1 is defined in terms of an
associated potential V1,eff (p) the following interpretation in the spirit of supersymmetric
quantum mechanics [33] can be given. If A annihilates the ground-state wavefunction of H,
i.e., Aφ0 = 0, the eigenvalues of H1 obey the relations Λ1,n = Λn+1, n = 0, 1, 2, . . . H1 has the
corresponding wavefunctions reading Aφn+1 because of the equality H1(Aφn+1) = AHφn+1 =
Λn+1(Aφn+1) for n = 0, 1, 2, . . .

Using now the minimal first-derivative representation of A i.e. A = ξ(p) ddp + θ(p), where ξ(p)

and (θ(p) are arbitrary suitable functions, the consistency condition

ξ(p) =
√

1 + τp2 (26)

readily follows along with the following forms of Veff and V1,eff

Veff (p) = c+ θ2 − (ξθ)′,

V1,eff (p) = Veff + 2ξθ′ − ξ′ξ′′, (27)

where c is an integration constant. Specifically, we obtain for κ(p) the zero-energy result

κ(p) =
ηp√

1 + τp2

for Λ = c− η.
Some remarks are in order on the feasibility of a generalized quantum condition by taking

into account the most general first-order differential form for η in the momentum space [34]

η(p) = r(p)
d

dp
+ s(p), r(p), s(p) ∈ R. (28)
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It gives the generalized form of the commutator

[η, η†] = 2rs′ − rr′′ (29)

in contrast to the standard [η, η†] = 1 considered earlier in this section. In (29) the prime
denotes derivatives with respect to p.

In the light of the new commutator (29), the Hamiltonian H(α,β) assumes the form

H(α,β) → H̃(α,β)(p) = − d

dp
r̃2(p)

d

dp
+ s̃(p)

d

dp
+ w̃(p), (30)

where the coefficients r̃, s̃, w̃ stand for the quantities

r̃ =
√
ω̃r ω̃ = ω − α− β > 0, (31)

s̃ = (α− β)(2rs− rr′), (32)

w̃ = ω(s2 − rs′ − r′s) + α(rs′ + s2) + β(rr′′ + r′2 − rs′ − 2r′s+ s2) +
ω

2
. (33)

Applying the similarity transformation on H̃(α,β)(p) according to

h̃(α,β) = ρ(α,β)H̃(α,β)[ρ(α,β)]−1, (34)

ρ(α,β) = e−
1
2

∫ p s̃
r̃2
dp (35)

produces the compact form

h̃(α,β) = − d

dp
r̃2(p)

d

dp
+ Ṽ (α,β)(p) (36)

with Ṽ (α,β) being

Ṽ (α,β)(p) =
s̃2

4r̃2
− 1

2
s̃′ + w̃. (37)

Comparison with (19) and subsequently to (14) reveals the mass function to be dependent on
the parameter τ if the p-dependent function r is explicitly known. Further knowledge of r(p)
and s(p) defines the form of the potential Ṽ (α,β).

3. Summary

To summarize, we have made in this paper an interesting observation that the eigenvalue problem
resulting from the GUP picture can be interpreted in terms of a MDM mechanical system
by making appropriate identifications. In this connection we also exploited the intertwining
relationships between two partner effective potentials and derived a set of consistency relations.
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