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1 Introduction

From time to time, non-Hermitian Hamiltonians have found applications in several research

areas, such as nuclear physics, quantum field theory, condensed matter physics, and biol-

ogy. Since the pioneering works of Bessis [1] and Bender and Boettcher [2], a subclass of

such Hamiltonians, containing operators invariant under joint action of parity (P: x→ −x,

p → −p) and time reversal (T: x → x, p → −p, i → −i), has become a subject matter

of considerable interest. One of the main reasons for this is that there is a strong ana-

lytical and numerical evidence supporting the conjecture that, except when PT symmetry

is spontaneously broken, the bound-state eigenvalues of these Hamiltonians are real (see

e.g. [2]–[12]).

PT-symmetric quantum mechanics is often seen as a testing bench for nonconventional

quantum field theories wherein PCT invariance (or PT invariance in scalar theories) plays a

leading role (see e.g. [13, 14]). This may be compared to the introduction of supersymmetric

quantum mechanics by Witten [15] as a testing ground for non-perturbative methods of

achieving supersymmetry breaking in field theory.

Both the field-theoretic interpretation and the phenomenological relevance of complex

potentials in quantum mechanics make it necessary to better understand some fundamental

issues connected with the replacement of Hermiticity by PT-symmetry, such as the physical

interpretation of the Hamiltonian eigenfunctions [16, 17, 18, 19, 20].

The present work is intended as a contribution to such an understanding. Our purpose

is twofold. Firstly, we will generalize to PT-symmetric quantum mechanics the conservation

law of standard quantum mechanics [21] (here formulated for one-dimensional systems)

∂P (x, t)

∂t
+
∂J(x, t)

∂x
= 0, (1)

similar to the continuity equation of classical hydrodynamics and relating the change in

time of the position probability density P (x, t) = |ψ(x, t)|2 to the gradient of the probability

current density J(x, t) = (~/2mi) [ψ∗(x, t)(∂ψ(x, t)/∂x) − ψ(x, t)(∂ψ∗(x, t)/∂x)]. Secondly,

we will discuss with some detailed examples a proposal for modifying the definition of

the normalization condition of bound-state eigenfunctions in accordance with this new

conservation law.
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2 Generalized Continuity Equation and Some of Its

Consequences

Let us start with the time-dependent Schrödinger equation for a single particle in one

dimension,

i~
∂ψ(x, t)

∂t
= −

~
2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t), (2)

where the potential V (x) is assumed to be complex and PT-symmetric, i.e., PTV (x)PT =

V ∗(−x) = V (x). As a consequence, the function ψ∗(−x, t) satisfies the equation

− i~
∂ψ∗(−x, t)

∂t
= −

~
2

2m

∂2ψ∗(−x, t)

∂x2
+ V (x)ψ∗(−x, t), (3)

where the potential is the same as in (2).

Consider now eq. (2) for some solution ψ1(x, t) and eq. (3) for some other solution

ψ2(x, t), which may be equal to or different from ψ1(x, t). Multiplying (2) by ψ∗

2(−x, t), (3)

by ψ1(x, t), and subtracting, we obtain

∂

∂t
[ψ∗

2(−x, t)ψ1(x, t)] +
~

2mi

∂

∂x

[

ψ∗

2(−x, t)
∂ψ1(x, t)

∂x
− ψ1(x, t)

∂ψ∗

2(−x, t)

∂x

]

= 0. (4)

For ψ2(x, t) = ψ1(x, t) = ψ(x, t), it is clear that eq. (4) is a natural generalization of the

continuity equation (1) of standard quantum mechanics, namely

∂PPT (x, t)

∂t
+
∂JPT (x, t)

∂x
= 0, (5)

with

PPT (x, t) = ψ∗(−x, t)ψ(x, t), JPT (x, t) =
~

2mi

[

ψ∗(−x, t)
∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(−x, t)

∂x

]

.

(6)

If ψ1(x, t) → 0 and ψ2(x, t) → 0 for x → ±∞, as is normally required for bound-state

wave functions, integration of (4) over the entire real line leads to the conservation law

∂

∂t

∫ +∞

−∞

dxψ∗

2(−x, t)ψ1(x, t) = 0, (7)

or for ψ2(x, t) = ψ1(x, t) = ψ(x, t),

∂

∂t

∫ +∞

−∞

dxPPT (x, t) = 0. (8)
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Note that for Hermitian Hamiltonians, the result corresponding to (8) is interpreted in

standard quantum mechanics as the conservation of norm in time [21].

From now on, we are going to restrict ourselves to energy eigenfunctions

ψ1(x, t) = u1(x)e
−

i

~
E1t, ψ2(x, t) = u2(x)e

−
i

~
E2t, (9)

associated with (possibly complex) energies E1, E2, respectively. On inserting (9) into (7),

we obtain

(E1 −E∗

2)e
−

i

~
(E1−E∗

2
)t
∫ +∞

−∞

dx u∗2(−x)u1(x) = 0. (10)

To study the consequences of (10), we have to distinguish between three cases.

If the two eigenvalues E1 and E2 are real, then E2 6= E1 implies the vanishing of the

integral on the left-hand side of (10), namely

∫ +∞

−∞

dx u∗2(−x)u1(x) = 0, (11)

whereas for E2 = E1 = E, eq. (10) is automatically satisfied. In such a case, if E is

nondegenerate, u2(x) is proportional to u1(x) = u(x) and following (8) we may propose

∫ +∞

−∞

dx u∗(−x)u(x) (12)

as a counterpart of the standard normalization integral in PT-symmetric quantum mechan-

ics. In the same way, the left-hand side of (11) can be seen as a counterpart of the scalar

product. It should be noted that in giving up the Hermiticity condition of the Hamiltonian

and replacing it by PT symmetry, some properties of norms and scalar products have been

lost. For instance, it is obvious that the integral in (12) is not positive-definite and may

therefore be called pseudo-norm [17].

If instead only one of the eigenvalues (for instance E1) is real and the other (E2) is

complex, eq. (11) again follows from (10).

Finally, if both eigenvalues E1 and E2 are complex, eq. (10) implies condition (11) if

E2 6= E∗

1 . This is true in particular for E2 = E1 = E. In such a case, if E is nondegenerate,

thence u2(x) is proportional to u1(x) = u(x) and condition (11) becomes

∫ +∞

−∞

dx u∗(−x)u(x) = 0. (13)
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On the contrary, if E2 = E∗

1 = E∗, then eq. (10) is automatically satisfied and we may take

∫ +∞

−∞

dx u∗2(−x)u1(x) (14)

as a counterpart of the standard normalization integral. Note that in (14), u1(x) and u2(x)

correspond to E and E∗, respectively. It is remarkable that in going from real to complex

eigenvalues, the roles of (11) and (12) are interchanged. Such results agree with the analysis

carried out in [17].

Let us consider in more detail the case of an eigenfunction u(x) corresponding to some

real, nondegenerate eigenvalue E. It satisfies the time-independent Schrödinger equation

−(~2/2m)d2u(x)/d2x+ V (x)u(x) = Eu(x), and so is the case of u∗(−x). Since E is nonde-

generate, we must have u∗(−x) = cu(x) for some complex constant c. From this relation,

it follows that u∗(x) = cu(−x) = |c|2u∗(x), hence |c| = 1. We conclude that

u∗(−x) = eiφu(x), 0 ≤ φ < 2π. (15)

If φ = 0 (resp. φ = π) in (15), then u∗(−x) = u(x) (resp. u∗(−x) = −u(x)) or, in other

words, u(x) is PT-symmetric (resp. PT-antisymmetric). If however φ 6= 0, π, it is always

possible to convert u(x) into such a function by multiplying it by some appropriate phase

factor. The functions

vσ(x) ≡ e
i

2
(φ−π

2
+σ π

2
)u(x), σ = ±1, (16)

indeed satisfy the relations v∗σ(−x) = σvσ(x), σ = ±1 and are PT-symmetric (σ = +1) or

PT-antisymmetric (σ = −1).

We propose to normalize u(x), or the corresponding vσ(x), according to the prescription

∫ +∞

−∞

dx u∗(−x)u(x) = σ
∫ +∞

−∞

dx [vσ(x)]
2 = σ. (17)

In the following, we illustrate the use of the above condition by considering some spe-

cific cases of PT-symmetric model potentials, namely, PT-symmetric oscillator, generalized

Poschl-Teller, and Scarf II potentials. In particular, we show that for this rule to be mean-

ingful, we have to tell which PT-parity σ, i.e., which function vσ(x), we are going to associate

to any given eigenfunction u(x) with real eigenvalue.
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3 Modified Normalization for the PT-Symmetric Os-

cillator

The potential for the PT-symmetric oscillator is given by [6]

V (α)(x) = (x− ic)2 +
α2 − 1

4

(x− ic)2
, (18)

where α > 0. It can be obtained from the usual three-dimensional radial harmonic oscillator

potential by effecting a complex shift of coordinate x → x − ic, c > 0, and replacing l by

α − 1
2
. Although it is beset with a centrifugal-like core, the shift of the singularity off the

integration path makes the corresponding Hamiltonian exactly solvable on the entire real

line for any α > 0, like the linear harmonic oscillator to which it reduces for α = 1
2
and

c = 0.

If α is different from an integer (which we shall assume here), the PT-symmetric oscilla-

tor Hamiltonian has a double series of energy eigenvalues E(α)
qn , which may be distinguished

by a quantum number q = ±1 [6]. For ~ = 2m = 1, they are given by

E(α)
qn = 4n+ 2− 2qα, n = 0, 1, 2, . . . . (19)

The corresponding eigenfunctions are expressible in terms of generalized Laguerre polyno-

mials:

u(α)qn (x) = N (α)
qn e

−
1

2
(x−ic)2(x− ic)−qα+ 1

2L(−qα)
n [(x− ic)2]. (20)

Here N (α)
qn is some yet undetermined normalization coefficient. Although the Laguerre

polynomials in (20) are in principle defined only for −qα > −1, i.e., for α values in the

interval 0 < α < 1, their definition can be extended to any values of α. In the interval

0 < α < 1 (and only in it), however, the energies (19) are ordered according to increasing

values of N = 2n + 1
2
(1 − q) = 0, 1, 2, . . . , and alternatively correspond to q = +1

and q = −1. In the special case of the linear harmonic oscillator (α = 1
2
and c = 0), q

becomes the parity of the eigenfunctions. For this reason, q is called quasi-parity of the

PT-symmetric oscillator.
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It is straightforward to see that
[

u(α)qn (−x)
]

∗

is related to u(α)qn (x) as shown in (15), where

the phase is given by φ = π(−qα + 1
2
) − 2ν (up to a multiple of 2π). Here ν denotes the

phase of the normalization coefficient N (α)
qn = |N (α)

qn |eiν .

We now choose to identify the PT-parity σ of the functions vσ(x) in (16) with the

quasi-parity q of the eigenfunctions (20). As a consequence, the functions

v(α)qn (x) = eiq
π

2
(−α+ 1

2
)
∣

∣

∣N (α)
qn

∣

∣

∣ e−
1

2
(x−ic)2(x− ic)−qα+ 1

2L(−qα)
n [(x− ic)2] (21)

are PT-symmetric or PT-antisymmetric for q = +1 or q = −1, respectively.

Let us normalize the functions u(α)qn (x) and v
(α)
qn (x) according to the rule (17), where σ

is replaced by q. From (20), we obtain
∫ +∞

−∞

dx
[

u(α)qn (−x)
]

∗

u(α)qn (x) = eiπ(−qα+ 1

2
)
∣

∣

∣N (α)
qn

∣

∣

∣

2
I(α)
qn , (22)

where

I(α)
qn =

∫ +∞

−∞

dx e−(x−ic)2(x− ic)−2qα+1
{

L(−qα)
n [(x− ic)2]

}2
. (23)

To calculate I(α)
qn , we consider the function of the complex variable z given by f(z) =

e−z2z−2qα+1
[

L(−qα)
n (z2)

]2
. It is analytic everywhere except at z = 0, which is a branch

point. Let us take the negative real axis as the branch cut. As the integral I(α)
qn can be

seen as the limit for R → ∞ of
∫+R
−R dz f(z) for z = x− ic (i.e., the integral on segment AB

in Fig. 1), we close a contour Γ ≡ ABCDEF in the complex plane, avoiding the singularity

by using a semi-circle Cρ of radius ρ. Since f(z) is analytic within and on Γ, by Cauchy’s

theorem, we have
∫

Γ dz f(z) = 0. Evaluating this integral and taking the limits R → ∞

and ρ → 0, we obtain that I(α)
qn converges if qα < 1, which is consistent with q = ±1 and

0 < α < 1.

As a result, eq. (22) becomes
∫ +∞

−∞

dx
[

u(α)qn (−x)
]

∗

u(α)qn (x) =
∣

∣

∣N (α)
qn

∣

∣

∣

2
cosπ(−qα + 1

2
)
Γ(−qα + n + 1)

n!
, (24)

if 0 < α < 1. Since the cosine on the right-hand side of (24) is positive or negative according

to whether q = +1 or q = −1, the result in (24) is consistent with condition (17). The

latter therefore leads to

∣

∣

∣N (α)
qn

∣

∣

∣ =

(

n!

Γ(−qα + n+ 1) cosπ(−α + 1
2
)

)1/2

. (25)
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As compared with the standard harmonic oscillator, the presence of a cosine on the right-

hand side of (25) is a new feature. Such a cosine disappears for α = 1
2
, so eq. (25) agrees

with the known normalization coefficients of the linear oscillator (α = 1
2
, q = ±1) and of

the three-dimensional radial oscillator (α = 1
2
, l = 0, q = −1).

4 Modified Normalization for the PT-Symmetric

Generalized Pöschl-Teller Potential

The PT-symmetric generalized Pöschl-Teller potential is given by [10]

V (A,B)(x) =
[

B2 + A(A + 1)
]

cosech2 τ −B(2A + 1) cosech τ coth τ, τ ≡ x− iγ, (26)

where B > A + 1
2
> 0 and −π

4
≤ γ < 0 or 0 < γ < π

4
. By using an sl(2,C) algebraic

framework, it was recently shown [10] that whenever B−A− 1
2
is different from an integer,

the corresponding Hamiltonian has two series of real energy eigenvalues E(A,B)
qn , which may

be distinguished by a label q = ±1 (here called quasi-parity for convenience sake) and which

for ~ = 2m = 1 are given by

E
(A,B)
+n = −

(

B − 1
2
− n

)2
, n = 0, 1, . . . , n+max,

B − 3
2
≤ n+max < B − 1

2
, (27)

E
(A,B)
−n = − (A− n)2 , n = 0, 1, . . . , n−max,

A− 1 ≤ n−max < A, (28)

where B > 1
2
and A > 0. The accompanying eigenfunctions read

u(A,B)
qn (x) = N (A,B)

qn (y − 1)
1

2
(λ+ 1

2
)(y + 1)

1

2
(µ+ 1

2
)P (λ,µ)

n (y)

= N (A,B)
qn 2

1

2
(λ+µ+1)

(

sinh τ
2

)λ+ 1

2

(

cosh τ
2

)µ+ 1

2 P (λ,µ)
n (cosh τ), (29)

where λ = q(A − B + 1
2
), µ = −A − B − 1

2
, y = cosh τ , P (λ,µ)

n (y) is a Jacobi polynomial,

and N (A,B)
qn some normalization coefficient.

In the limit γ → 0, the real generalized Pöschl-Teller potential is recovered and only

the eigenvalues E
(A,B)
−n and corresponding eigenfunctions u

(A,B)
−n (x) survive [22]. Since this
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potential is singular, it has to be restricted to the half-line (0,+∞). The complexified

potential, as given above, gets regularized on performing the shift x → x − iγ and so may

be considered on the entire real line, as it was the case for the PT-symmetric harmonic

oscillator in the previous section.

The analogy between these two PT-symmetric potentials also extends to the normaliza-

tion problem. The phase φ in (15) is now given (up to a multiple of 2π) by φ = π(λ+ 1
2
)−2ν,

where ν denotes the phase of the normalization coefficient. This shows that the role of α for

the PT-symmetric oscillator is now played by the constant −qλ = B−A− 1
2
. As in sect. 3,

the PT-parity σ may be identified with q, leading to PT-symmetric and PT-antisymmetric

eigenfunctions v(A,B)
qn (x) (q = ±1), given by

v(A,B)
qn (x) = ei

π

2
(λ+ 1

2
q)
∣

∣

∣N (A,B)
qn

∣

∣

∣ 2
1

2
(λ+µ+1)

(

sinh τ
2

)λ+ 1

2

(

cosh τ
2

)µ+ 1

2 P (λ,µ)
n (cosh τ). (30)

Applying again prescription (17) to normalize the eigenfunctions, we are led to the integral

of the function f(z) = (sinh z
2
)2λ+1(cosh z

2
)2µ+1

[

P (λ,µ)
n (cosh z)

]2
on the contour Γ of Fig. 1,

where c is replaced by γ (and the latter is assumed positive for simplicity’s sake). In this

respect, it is worth noting that among the branch points of f(z) at z = 0, ±iπ, ±2iπ,

±3iπ, . . . , we only have to take care of the first one because of the range of γ, as stated

below eq. (26).

The final result for the normalization integral reads

∫ +∞

−∞

dx
[

u(A,B)
qn (−x)

]

∗

u(A,B)
qn (x) = 2

∣

∣

∣N (A,B)
qn

∣

∣

∣

2
cos

[

π(λ+ 1
2
)
]

I(λ,µ)n , (31)

provided λ is restricted by the condition λ > −1, which is consistent with q = ±1 and

A+ 1
2
< B < A+ 3

2
. In (31), I(λ,µ)n is the real integral

I(λ,µ)n =
∫

∞

1
dt (t− 1)λ(t+ 1)µ

[

P (λ,µ)
n (t)

]2
, (32)

which, for q = −1, appears in the calculation of the normalization coefficient of the real

potential eigenfunctions. It is convergent and positive for the above-mentioned restricted

range of parameters and both values of q. As far as we know, no closed analytical formula
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is known for it, except when n = 0. In such a case, the change of variable s = 1/t leads

to [23]

I
(λ,µ)
0 = 2λ+µ+1Γ(−λ− µ− 1)Γ(λ+ 1)

Γ(−µ)
. (33)

Furthermore, the cosine on the right-hand side of (31) is positive or negative according to

whether q = +1 or q = −1. Hence eq. (31) is consistent with (17), from which it follows

that
∣

∣

∣N (A,B)
qn

∣

∣

∣ =
{

2 cos[π(A− B + 1)]I(λ,µ)n

}

−1/2
. (34)

The cosine disappears from (34) if B = A+1. For this choice of parameters, potential (26)

reduces to V (A,A+1) = −1
2
(A + 1)(2A + 1) sech2 τ

2
, which remains nonsingular in the limit

γ → 0.

As a final point, it is worth mentioning that the generalized Pöschl-Teller potential (26)

is related to the PT-symmetric Pöschl-Teller II potential considered in [9] through a com-

plex point canonical coordinate transformation [10], which also connects the corresponding

eigenfunctions. The results of the present section can therefore easily be applied to the

latter potential.

5 Modified Normalization for the PT-Symmetric

Scarf II Potential

The PT-symmetric Scarf II potential is defined by [10]

V (A,B)(x) = −
[

B2 + A(A+ 1)
]

sech2 x+ iB(2A+ 1) sech x tanhx, (35)

where A > B − 1
2
> 0. It was shown using sl(2,C) as a tool [10] that for values of

A− B + 1
2
different from an integer, the corresponding Hamiltonian has a double series of

energy eigenvalues E(A,B)
qn , distinguished by a label q = ±1 (again called quasi-parity for

convenience sake), and given by

E
(A,B)
+n = − (A− n)2 , n = 0, 1, . . . , n+max,

A− 1 ≤ n+max < A, (36)

E
(A,B)
−n = −

(

B − 1
2
− n

)2
, n = 0, 1, . . . , n−max,

B − 3
2
≤ n−max < B − 1

2
, (37)
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if ~ = 2m = 1, A > 0, and B > 1
2
. The accompanying eigenfunctions read

u(A,B)
qn (x) = N (A,B)

qn (sech x)−
1

2
(λ+µ+1)e−

i
2
(λ−µ) arctan(sinhx)P (λ,µ)

n (i sinh x) (38)

in terms of Jacobi polynomials. Here λ = q(−A+B − 1
2
), µ = −A−B − 1

2
, and N (A,B)

qn is

some normalization coefficient.

Contrary to the potentials considered in the two previous sections, the PT-symmetric

Scarf II potential is not obtained from the corresponding real potential [22] by a com-

plex shift of coordinate, but instead by complexifying one parameter (B → iB). Such a

complexification is responsible for the appearance of the additional series (37) of energy

eigenvalues.

Comparing (38) with (15), we find (up to a multiple of 2π) φ = −2ν, where ν is the

phase of the normalization coefficient. If we identify PT-parity with quasi-parity again, we

obtain

v(A,B)
qn (x) = ei(q−1)π

4

∣

∣

∣N (A,B)
qn

∣

∣

∣ (sech x)−
1

2
(λ+µ+1)e−

i

2
(λ−µ) arctan(sinhx)P (λ,µ)

n (i sinh x), (39)

where exp[i(q − 1)π
4
] = 1 for PT-symmetric functions and −i for PT-antisymmetric ones.

The normalization integral is now

∫ +∞

−∞

dx
[

u(A,B)
qn (−x)

]

∗

u(A,B)
qn (x)

=
∣

∣

∣N (A,B)
qn

∣

∣

∣

2
∫ +∞

−∞

dx (sech x)−λ−µ−1e−i(λ−µ) arctan(sinhx)
[

P (λ,µ)
n (i sinh x)

]2
. (40)

Let us consider, for instance, the n = 0 case corresponding to the lowest states of both

series of energy levels. The integral on the right-hand side of (40) is then easily calculated

by performing the change of variable tan y = sinh x. The results read [23]

∫ +∞

−∞

dx
[

u
(A,B)
+0 (−x)

]

∗

u
(A,B)
+0 (x) =

∣

∣

∣N (A,B)
+0

∣

∣

∣

2 πΓ(2A)

22A−1Γ(A− B + 1
2
)Γ(A+B + 1

2
)
, (41)

∫ +∞

−∞

dx
[

u
(A,B)
−0 (−x)

]

∗

u
(A,B)
−0 (x) =

∣

∣

∣N (A,B)
−0

∣

∣

∣

2 πΓ(2B − 1)

22B−2Γ(B −A− 1
2
)Γ(B + A + 1

2
)
. (42)

The right-hand side of (41) is positive for any allowed values of A and B because

the arguments of all three gamma functions are positive. This is compatible with the

11



normalization condition (17) with σ = q = +1. On the right-hand side of (42), on the

contrary, the argument of Γ(B − A − 1
2
) is negative while those of the two remaining

gamma functions are positive, which means that the sign of the normalization integral for

σ = q = −1 depends on the relative magnitudes of A and B− 1
2
. A negative sign compatible

with (17) is obtained for B − 1
2
+ 2k < A < B + 1

2
+ 2k, k = 0, 1, 2, . . . . In particular, for

k = 0, we get a condition B − 1
2
< A < B + 1

2
rather similar to the conditions previously

encountered for the PT-symmetric oscillator and generalized Pöschl-Teller potentials.

6 Conclusion

To conclude, we have derived, in the set up of a very general framework, the conserva-

tion law pertaining to PT-symmetric quantum mechanical systems. We have found, as a

consequence, that the normalization integral ceases to be always positive definite. The pos-

sibilty of encountering non-positive definite norms is illustrated by means of some specific

examples of PT-symmetric potentials.
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Figure caption

Fig. 1. Contour Γ in the complex plane.
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