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Abstract: We propose an interacting nonhermitian model described by a two-
mode quadratic Hamiltonian along with an interaction term to locate and analyse the
presence of an exceptional point in the system. Each mode is guided by a Swanson-like
quadratic Hamiltonian and a suitable choice is made for the interaction term. The
parity-time symmetric transformation is adopted in the standard way relevant for a
coupled system.
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1 Introduction

Nonhermitian Hamiltonians undergo non-unitary evolution and generally represent open
quantum systems with balanced gain and loss when interacting with the environment [1,2].
The subclass embodying PT -symmetry, introduced by Bender and Boettcher about a
couple of decades ago, has proved to be a fertile ground for intense inquiry as exemplified
by outpouring of research outputs in this direction [3–6]. PT -symmetric Hamiltonians
may support real or complex conjugate pairs of energy eigenvalues under certain condi-
tions related to such a symmetry being exact or spontaneously broken. However, unlike
Hermiticity which generally governs a closed and isolated system accompanied by unitary
time evolution, and serves as a sufficient condition for the Hamiltonian to possess real
eigenvalues, PT -symmetry is neither necessary nor sufficient to ensure reality of the spectra.
Exceptional points (EPs) may occur as critical values where symmetry breaking takes place
and are regarded as a typical feature of nonhermitian systems [7–9]. These unconventional
points refer to solutions of the parameter equation at which the associated eigenvectors
are parallel. Basically, an EP is a branch point singularity where two or more discrete
eigenvalues, corresponding to two different quantum states, along with their accompanying
eigenfunctions coalesce (for nice introductions to the subject, see [10, 11]) pointing to
degeneracies in the system. The latter ceases to obey any conservation law because of
its open character [7]. Indeed, while approaching the exceptional point, the phases of
the eigenfunctions of the Hamiltonian which is nonhermitian, may not show sufficient
robustness, as a result information from outside can get leaked into the system [12,13].

Potential appearance in a wide range of physical problems like those in optical and
condensed matter models, coupled cavity problems and photonics where high resolution
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control of optical gain and loss is possible, has sparked interest in systems exhibiting
EPs [14, 15]. In particular, observations of phase transitions and occurrence of EPs as
a three-state coalescence in optical trimers [16], wherein a linear chain of three coupled
cavities are connected in an array to have an inbuilt PT -symmetry with adjustable control
parameters [17], reflect presence of EPs and crossing of it as coupling parameters are
varied [18]. Direct coupling of cavities has led to research in PT -induced enhanced
nonlinear characteristics [19,20] where the behaviour around the EP provides insights to
the sensitive coupling dependence at a specific degenerate point. Apart from studies in
optical trimer structure [21–24], works have also been reported for optical dimer involving
two coupled cavities [25, 26] and coupled optical parametric oscillators [27]. Realization of
EPs in other systems include cooling of qubits and interacting oscillators [28]. Although
not of direct concern to the spirit of the present work, it may be worthwhile to note that
since EPs induce quickest transfer of dissipative energy, they have potential relevance
in optimal cooling of qubits [29]. Very recently, the Hopfield-Bogoliubov matrix has
been explored to demonstrate the feasibility of EPs for wide subcases of the controlling
discriminant [30]. The singularities at EPs often reveal abnormal topological structures
as observed experimentally [31] especially in connection with the topological structures
of a Riemann surface [32]. The phase diagrams often help to classify the behavior of the
system into different phases that are dependent on the class of external parameters. It
is interesting to point out that recent works [33] have focused on the Riemann surfaces
for the real and imaginary components of the eigenvalues enabling one to track the PT
phases. Curved lines of EPs are found to separate the different phases. With the variation
of the parameter the behavior of the system undergo changes because of the trajectory
variation in the parameter space.

Interest in PT -systems has led to studies in many coupled systems as well. Encountering
EPs in them is a well recognized feature (see [34–36] and references therein). However, to the
best of our knowledge, no studies have so far been undertaken on the Swanson oscillator [37]
which is an extended harmonic oscillator model but designed to be nonhermitian. It was
originally proposed to track down transitions of probability amplitudes that are governed
by nonunitary time evolution. Motivated by the previous findings, we undertake in this
communication a search for the existence of an EP by coupling two harmonic oscillators in
an interacting nonhermitian framework and using Swanson’s Hamiltonian [37] as a basis
for each of the two oscillators.

The model Hamiltonian of Swanson is expressed in terms of the usual harmonic oscillator
creation and annihilation operators a† and a, satisfying the commutation relation [a, a†] = 1,
namely

H(ξ,χ) =
(
H(χ,ξ)

)†
= ωa†a+ ξa2 + χa†

2
+

1

2
ω (1.1)

where ω, ξ, χ ∈ <, and ω, ξ, χ, such that ξ 6= χ and Ω2 = ω2 − 4ξχ > 0. It is well known
that H(ξ,χ) can be completely solved using standard operator techniques and seen to possess
real, positive and discrete spectrum in line with the conjecture in [3]. Swanson Hamiltonian
is obviously Hermitian but only if ξ = χ; however, it is PT -symmetric (or, equivalently,
P-pseudo-Hermitian [38]) for all values of ξ and χ. This can be readily checked by applying
the transformation properties of P : a→ −a and T : a→ a.

The Hamiltonian (1.1 is well studied by many authors (see for instance, [39]). Jones [40]
showed, by means of a similarity transformation, that H(ξ,χ) admits of an equivalent
Hermitian representation (see also [41, 42]). It was also demonstrated to be pseudo-
Hermitian [43] and subsequently a suitable generalization for it was made [44]. A study of
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non-PT -symmetry phase transition reveals the presence of exceptional points of infinite
order [45].

We now proceed to deal with an interacting Swanson Hamiltonian to ascertain its phase
transitions as one varies the parameters present in it. This is distinguished by specific
inequalities among the parameters. An EP appears at the point of phase transition.

2 Coupled two-mode oscillators

In connection with the system of two optical resonators [46], an algebraic treatment was
developed for PT -symmetric coupled bosonic oscillators to find out the classical and
quantum mechanical relevance [47], and stability tests were undertaken with regard to the
gain-loss parameter [48]. Here we focus on a single pair of Swanson-like oscillators and
label them by 1 and 2. The Hamiltonian (Hs) for the union of 1 and 2 is given by

Hs = H(1) +H(2) (2.1)

Before we come to the coupling of the two oscillators let us note that for the system we
are considering we take the following choice of H(i)

H(i) = ω

(
a†iai +

1

2

)
− λ

(
a2i − a

†2
i

)
, i = 1, 2 (2.2)

in which λ is a positive real parameter. A comparison with (1.1) shows that we have set
the corresponding ω1 = ω2 = ω. Further, in each of H(i) the counterparts of the coupling
constants ξ and χ are taken to equal but with differing signs. The case when these are of
same sign is suitable for squeezed harmonic oscillator [49–51]. In (2.2). Taking interactions
into consideration we will have, in general, a combined system of two coupled oscillators.
We provide such a facility in the governing Hamiltonian by allowing for the presence of
different elements with imaginary coefficients.

To examine the PT -symmetry of the system (2.1) let us write a1 = 1√
2
(x + ip) and

a2 = 1√
2
(y + iq) and follow Bender et al’s observation [36] that under P

P : x→ −y, y → −x, p→ −q, q → −p (2.3)

while under T

T : x→ x, y → y, p→ −p, q → −q, i→ −i (2.4)

These reflect that under PT

PT : a1 → −a†2, a2 → −a†1, a†1 → −a2, a†2 → −a1 (2.5)

Applying (2.5) to (2.2) we see that the term involving λ changes sign under PT resulting
in H(1) not transforming to H(2) and vice versa. Hence the loss and gain oscillators are
not interchanged.

We now consider the impact of complex frequencies ω ± iγ, signifying oscillatory
behaviour in the system, γ being a real parameter, and vary the coupling parameters
continuously in the parameter space. Our search for an EP lies in determining the transition
points and we inquire specifically into the case when the eigenvalues become degenerate
and the eigenstates at such a point coalesce together. We identify such a location as a
candidate for the EP by following the standard definition of its existence.
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Let us express the total Hamiltonian H as a superposition of the pieces H(1),H(2) along
with an interaction term H(int) that is, H = H(1) +H(2) +H(int), where

H(1) = 2(ω − iγ)

(
a†1a1 +

1

2

)
− λ

(
a21 − a

†2
1

)
, (2.6)

H(2) = 2(ω + iγ)

(
a†2a2 +

1

2

)
− λ

(
a22 − a

†2
2

)
, (2.7)

H(int) = α(a†1a2 + h.c) + β(a1a
†
2 + h.c) + 2δ(ia†1a

†
2 + h.c) (2.8)

is defined in terms of non-zero real parameters α, β, δ. Note that the interacting Hamil-
tonian H(int) is PT -symmetric under the transformations specified in (2.5) but the total
Hamiltonian H is not so due to H(1) not being swapped to H(2) and conversely. We now
proceed to enquire whether our system defined by H exhibits an EP.

We can arrange H in the form
(
a†1 a1 a†2 a2

)
M
(
a1 a†1 a2 a†2

)T
by sandwich-

ing a matrix M between the column
(
a1 a†1 a2 a†2

)T
and its hermitian conjugate, with

M given by the 4× 4 structure

M =


ω − iγ λ α iδ
−λ ω − iγ −iδ β
α iδ ω + iγ λ
−iδ β −λ ω + iγ

 (2.9)

Note that M 6= M †. In the analysis of quantum phase transitions, different forms have
been chosen for the matrix M [18, 20,30].

The matrix M provides the indicial equation |M − ΛI| = 0 which we solve for the
eigenvalues of M . When expanded it reads

Λ4 + jΛ3 + kΛ2 + lΛ +m = 0 (2.10)

where the coefficients are

j = −4ω

k = 2γ2 − 2δ2 − α2 − β2 + 2λ2 + 6ω2

l = 4iδ(β + α)λ+ 2ω(β2 + α2)− 4ω(λ2 + γ2 − δ2)− 4ω3

m = λ4 + ω4 + γ4 + δ4 + α2β2 + 2αβλ2 − 4i(α+ β)δωλ+ 2λ2ω2 − ω2(α2 + β2) (2.11)

−γ2(2δ2 + β2 + α2 + 2λ2 − 2ω2)− 2δ2(αβ − λ2 + ω2)

In this work we are interested in exploring the exceptional points arising as a result of
a coalescence of different eigenvalues of M . These are qualitatively different from the
degeneracy character of the Hamiltonian H. A thorough theoretical study of (2.10) subject
to (2.11) will require an elaborate computational treatment. This and the connection
between the EPs of M and the degeneracy emerging in H will be taken up in a future
communication. To keep things tractable and facilitate simple mathematical analysis, we
focus on the special case of β = −α when the set of equations (2.11) reduces a great
deal and we are left with the parameters δ and α apart from γ in the matrix M to track
down the presence of a plausible EP in the system. It needs to be mentioned that for our
adopted choice, the interacting piece of the Hamiltonian will contain only the coupling
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terms a†1a2 + h.c. but the parameter α continues to be present in M whose variation is
exploited to locate the presence of an exceptional point. We proceed to explore this feature
in the following section.

In the present scenario it needs to be emphasized that other choices of parameters can
well be made enabling to locate more number of EPs. But that is of academic interest only.
Our main plan is to demonstrate in a simple scenario how one can run into an EP for a
system of coupled oscillators as guided by a specific model of the interacting Swanson type.

3 Results and discussions

The eigenvalues E1,2,3,4 are the roots of the polynomial equation (2.10) and correspond to
the eigenvalues of M . These are straightforwardly obtained in the form

E1 = ω −
√
−γ2 + δ2 + α2 − λ2 + 2

√
γ2λ2 − δ2λ2 (3.1)

E2 = ω +

√
−γ2 + δ2 + α2 − λ2 + 2

√
γ2λ2 − δ2λ2 (3.2)

E3 = ω −
√
−γ2 + δ2 + α2 − λ2 − 2

√
γ2λ2 − δ2λ2 (3.3)

E4 = ω +

√
−γ2 + δ2 + α2 − λ2 − 2

√
γ2λ2 − δ2λ2 (3.4)

expressed in terms of the given parameters. Observe that all the parameters appear
quadratically in (3.1) − (3.4). In principle there should be a relationship between the
eigenvalues of M and those of H. Concerning the eigenvalues of the latter, let us note that
for the nonhermitian quadratic Hamiltonian (2.6) and (2.7) possessing respectively the
complex coefficients ω − iγ and ω + iγ, the eigenvalues are extremely difficult to construct
in a closed form. For the condition Ω2 ≥ 0) when there are real and positive eigenvalues,
Swanson [37] outlined a procedure to determine exactly the eigenvalues for the case γ = 0
by means of a generalized Bogoliubov transformation and thereby obtaining a connection
with the standard harmonic oscillator. In the process one had to deal with Hilbert space
with indefinite metric and non-normalizable eigenstates. The presence of the interaction
Hamiltonian H(int) in the present scenario makes the computation of the eigenvalues of
the entire Hamiltonian H even more difficult that takes us beyond the spirit of this work.

To access an EP, we address the expressions of E1 and E2 first and note that both of
them converge to the unique single value ω provided either of the following conditions

δ(−) = ±
√
γ2 − α2 − 2αλ− λ2 (3.5)

where δ(−) is defined with respect to the negative-sign of 2αλ inside the square-root, are
met. However, because of the opposite signs in front of the inner square root of (3.3) and
(3.4) as compared to those in (3.1) and (3.2), E3 and E4 remain nondegenerate. To sum
up, where the EP occurs, E1,2,3,4 are given by

E1,2,3,4 =
(
ω, ω, ω − 2

√
−αλ− λ2, ω + 2

√
−αλ− λ2

)
(3.6)

Interestingly, the sensitive dependence on the parameters α and λ is revealed when we look
at α = −λ. While for α < −λ, E3 and E4 are real quantities, for α > λ they transform to a
pair of conjugate complex numbers. Exactly at α = λ all the four eigenvalues E1,2,3,4 merge
and coalesce to a single degenerate real value ω. It can be looked as a point of localization
where the system undergoes a spontaneous transition from the existing nondegeneracy of E3

and E4 to a collapse into a state of degeneracy of all eigenvalues and subsequently emerging
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into the state where the conjugate pair of E3 and E4 are distinct. This is described in
Figure 1. The whole situation speaks of the signature of an EP because the corresponding
four eigenvectors coalesce there.

(a) (b)

Figure 1: (a) In the region α < −λ, E1,2 are degenerate and real at the value ω as in
(3.6), E3,4 are also real but remain split for their respective values. The EP corresponds
to the condition α = −λ. For α > −λ, while E1,2 continue to remain degenerate at ω,
E3,4 become conjugate complex sharing their real part with E1,2. (b) We plot Im(E3,4)
explicitly for α > −λ. For numerical estimates we took ω = 2 and λ > 1

2 .

On the other hand, the situation is rather different for the complementary condition

δ(+) = ±
√
γ2 − α2 + 2αλ− λ2 (3.7)

where δ(+) is defined with respect to the positive-sign of 2αλ inside the square-root. Unlike
those in (3.6), here E1, E2, E3, E4 have different values

E1 = ω −
√

2λ(α− λ) + 2λ |α− λ|, (3.8)

E2 = ω +
√

2λ(α− λ) + 2λ |α− λ|, (3.9)

E3 = ω −
√

2λ(α− λ)− 2λ |α− λ|, (3.10)

E4 = ω +
√

2λ(α− λ)− 2λ |α− λ| (3.11)

Arguing similarly as in the previous case, we see that while for α > λ, all the energies are
real (

ω − 2
√
αλ− λ2, ω + 2

√
αλ− λ2, ω, ω

)
(3.12)

the transition to α < λ results in E3 and E4 assuming complex values as follows from
(3.10) and (3.11). Like before, for α = λ, all the four energies E1,2,3,4 coalesce to the unique
point ω while the corresponding four eigenvectors also coincide there. The presence of a
bifurcation as evolving out of the EP is thus exhibited at the point ω. See Figure 2.

Finally, it is to be stressed that with δ(+) given by (3.5) and employing α = −λ, a
fourth-order EP can be achieved which is formed by the coalescence of 4 eigenvectors. We
do not expect profound physics to emerge out of it except that more complicated cases of
degeneracy and types of EPs would be encountered.

We thus find that one can arrive at an EP while transiting either of the conditions
α = ±λ. Corresponding to them, we see that before an EP is reached, there is only a
part-degeneracy of E1 and E2 as is clear from (3.6), and similarly for E3 and E4 as is
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(a) (b)

Figure 2: (a) In the region α < λ, E3,4 are conjugate complex with Re(E3,4) as well as
E1,2 having the common value ω. The EP corresponds to the condition α = λ where all
the energies E1,2,3,4 coalesce to ω. Beyond it, i.e. when α > λ, E1,2 continue to remain real
but mutually unequal unlike the case in Figure 1 while E3,4 stays fixed at ω. (b) Im(E3,4)
is plotted. For numerical estimates we took ω = 2 and λ = 1

2 .

evident from (3.12). The point to observe is that the behaviour of the system is sharply
different for the two cases. In the first one, it is evident from (3.6) that as the phase
transition occurs, E3 and E4 gradually collapse to the EP ω, E1 and E2 having already
settled there. However, for the condition (3.12), a different picture emerges altogether in
that both the pairs (E1, E2) and (E3, E4) are equidistantly split on the two sides of the
point ω, with different values of discontinuity resulting from the different signs of the inner
square root in their respective expressions. At the transition point, the discontinuities
wash out and all the four energies formally assume the coalescence value of ω.

4 Summary

The study of nonhermitian quantum systems has attracted a good deal of attention over
the past few years. The presence analysis deals with a nonhermitian Swanson-like model
describing a coupled system of bosonic oscillators in which their mutual interactions are
taken into account in a minimal way. We sketched the behaviour of the parametric interplay
when these oscillators are assumed to be of the same frequency. Since a detailed treatment
of the parameter interplay keeping all the elements present in the Hamiltonian will be out
of bounds for practical reasons, we concentrated on specific constraints among the coupling.
We are able to show that an EP as a nonhermitian degeneracy exists while the eigenstates
undergo bifurcation. Indeed for the two sets of parametric conditions the existence of a
bifurcation point is implied in the vicinity of the EP where the corresponding eigenvalues
coalesce. The transition points have been pictorially depicted.

5 Data availability statement

All data supporting the findings of this study are included in the article.
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