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Abstract. Sustained droughts coupled with increasing
pressure from urbanization severely test the ability of farmers
to continue in agriculture. Understanding farmers’ resilience
to such pressures is increasingly becoming a significant policy
concern. In this paper, a new measure of resilience to severe
and sustained droughts in agriculture is derived as the abil-
ity to continue farming by saving and carrying forward water
through the adoption of water efficient technology. In addi-
tion, the role of behavioral factors—such as subjective risk
perception over the probability of droughts, of the probabil-
ity of land getting urbanized, and of resistance to revising
beliefs over water scarcity situation—in determining farmers’
resilience to droughts is explored. Findings highlight the key
role played by behavioral factors in influencing the decision to
adopt when the economic factors, such as the price of water,
do not capture the true opportunity costs of water. The range
of available technological options is found to be crucial too, as
marginal improvements in technology do not encourage adop-
tion. An empirical application to the case of lettuce farming
in Western Australia reveals that in the presence of specu-
lative benefits from land rezoning, technological adoption is
done only for enhancing profits in agriculture and not for im-
proving resilience to droughts. Land rezoning possibilities may
further distort technology adoption decisions, thereby, reduc-
ing resilience to droughts.

Key Words: Drought resilience model, risk perception,
technology adoption model, water scarcity, land rezoning.

1. Introduction. Agriculture all over the world is facing pressure
to use water efficiently due to increasing scarcity and rising urban and
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environmental water demands. When faced with the prospect of long-
term water shortages in agriculture, farmers have the option of miti-
gating water scarcity through adjusting crop choices or through crop
management, such as investment in water-saving options like drip ir-
rigation, or to exit farming. Given these tough choices faced by the
farmers, their persistence in agriculture, particularly in presence of
sustained droughts, is becoming an important policy question that re-
mains to be tackled adequately.

In this paper we model the problem of decision making under uncer-
tainty relating to investment in water-saving technology for a farmer
faced with long-term water scarcity and urbanization pressure. A mea-
sure of the farmer’s resilience in agriculture is derived that is based
upon the number of years of sustained droughts that he can withstand
before exiting agriculture. Additionally, we explore the role of psy-
chological influences such as belief revision and probability weighting
on the decision to adopt water-saving technology that may impact a
farmer’s resilience.

Measuring farmers’ resilience against severe droughts is an aspect
that has not been fully explored in the literature to the best of the
authors’ knowledge.1 Whereas several factors such as a preference for
rural lifestyle choice or the ability to substitute agricultural income
with other sources of income can make farmers resilient to droughts, in
this paper we refer to resilience as pertaining to the ability of the farmer
to continue farming despite decreasing water supply. Accordingly, re-
silience to sustained droughts could be enhanced through adoption
of water-saving technology. Several factors may influence technology
adoption. These could be economic, political, technological, or behav-
ioral. Farmer heterogeneity, which may lead to differences in size, pro-
ductivity, or over risk perceptions, may play a key role in deciding who
adopts and who exits. Climatic and policy related variations in wa-
ter supply are a crucial factor too, as they introduce uncertainty over
returns from such investments in technology. Sunk cost in new technol-
ogy and the possibility of speculative rewards from land rezoning could
also be determinants in investment decisions. But the overall impact
of each of these factors can be optimally evaluated only when explored
simultaneously.

Most of the existing work on technology adoption (for instance,
Khanna, Epohue, and Hornbaker [1999], Carey and Zilberman [2002],
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and Isik [2001]) is based upon the option value approach first taken
by Dixit and Pindyck [1994] and McDonald and Seigel [1986]. This
basically argues that irreversibility associated with the investment in
sunk costs presents an option value for waiting and, therefore, delays
investment. However, although the option value approach derives an
important insight into the timing of adoption, which is not captured
by the net present value approach, there are several other equally im-
portant factors that may influence technology adoption decisions by
farmers, which have not been adequately dealt with in the literature.
These include behavioral factors, such as risk perception over droughts,
opportunity for speculative benefits from land rezoning, unavailability
of economically viable technological options, and the political economy
of agriculture. Although Carey and Zilberman [2002] find water mar-
kets as discouraging adoption in the United States, in Australia the
price of water has been found to be too low to influence water-saving
technological choices in agriculture (Brennan [2007]). Subjective per-
ception of the probability of severe droughts may vary among farmers
and over time. Such considerations as well as the possibility of reap-
ing higher land prices from future urbanization make the prediction of
technology adoption a complex exercise.

In this paper, we explore the nature of linkages between these pre-
viously unexplored factors and their impact on farmers’ resilience to
water scarcity, severe droughts, and pressure from urbanization. The
approach involves modeling the farmers’ ability to carry forward some
or all of the water saved through better technology, which would have
implications for their survival in the years when water supply is severely
constrained through droughts. This ability to save water for the fu-
ture makes their survival in the wake of a drought endogenous to
their current decisions related to water abstractions and technology
adoption.

In the remaining paper, we first lay out the analytical framework of
the model of technology adoption decisions in the presence of a stochas-
tic water supply, possibilities of land urbanization (which yields positive
rewards), and severe droughts. Next, we illustrate the intuition through
an application to the case of lettuce farming in Western Australia. Fi-
nally, the discussion and conclusion sections highlight and generalize
the main findings.
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2. Model. The model considers a farmer who has a single source
of water that could be a reservoir that he privately maintains or
an allocation from the government. The stock of water is annu-
ally augmented through rainfall. The stock dynamics of the reservoir
follows:

reservoir(t + 1) = reservoir(t) + (rain(t)) · (1 − P (drought)) − h(t),

(1)

where rain(t) follows a normal distribution with mean µ and stan-
dard deviation σ, and h(t) is the water harvested by the farmer in
each time period. Harvesting is optimally derived by the model. Fur-
ther, P(drought) is the possibility of a per period severe drought in
the wake of which there is no water allocation to the farmer (or
there is no rainfall through which he could augment his reservoir)
and the farmer has to rely entirely on the stock of existing reservoir
for farming as long as the drought continues. Whenever a drought
happens, he is assumed to harvest a fixed water quantity equal to
“mets,” which is the minimum evapotranspiration required for pro-
ducing crops. The “mets” value is a proportion of optimum water
application in a normal year, which is essential to avoid damage to
the crops.2 Thus, the reservoir in drought years takes the following
path

reservoir(t + 1) = reservoir(t) − α · resevoir(t) − mets,(2)

where α is the proportional decrease in reservoir water due to evapo-
ration, leakage, and so forth. We further assume, without any loss of
generality, that there is no leakage from the reservoir in the wet years.
Once the reservoir level goes below “mets,” the farmer cannot sustain
agriculture for another year and has to exit farming.3 The number of
consecutive years, n(t), for which he can sustain in a severe drought
depends on several factors including his reservoir level at time t at
which consecutive droughts begin, on α and on mets. This value of n is
crucial in determining the farmer’s survival in agriculture and, there-
fore, could be construed as a measure of his resilience and is derived by
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solving equation (2) for fixed amounts of harvesting (mets) until there
is less than mets amount of water left in the reservoir as4

n(t) = ceil

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log

(

(1 + α) · mets

mets + α · reservoir (t)

)

log (1 − α)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.(3)

On exit from farming, he recovers some resale value (resale) of land,
equipment, and so on. The farmer’s exit from agriculture could also be
induced by another event: rezoning of his farmland for urbanization.
Urbanization gives him greater rewards for the same land (say U )
as compared to a resale value of land that he receives from selling it
before land is rezoned. The probability of land getting rezoned in any
year “t” is assumed to follow a sigmoid function and is based upon the
assumption that as population pressure increases, agricultural areas
near the urban periphery get urbanized over time

P (L) =
at

b + t
,(4)

where L refers to land rezoning and parameters a and b determine
the maximum value and the time at which the probability of rezoning
peaks. The profit function for the farmer in any normal year is given
as

rainprofit(t) = πf(h) − ch(t),(5)

where π is the price of the agricultural produce, and ch(t) is the cost of
harvesting water (or the price paid to the government for its allocation).
In a severe drought year, as “harvest = mets,” profit is defined as

droughtprofit(t) = πf(mets) − ch(t).(6)

Thus, the expected gain EG from farming in any year is

EG = rainprofit(t) · (1 − P (drought)) + droughtprofit · P (drought).

(7)



442 R. RANJAN AND S. ATHALYE

Next, let us consider the future output of a farmer starting from
a particular year. In order to obtain the total reward from farming,
we break it into several possible cases that are independent of each
other. Let us divide these cases on the basis of year T until the farmer
practices normal farming and after which the exit situation manifests.
Thus, for exactly T years, he gets his expected gain every year, and
after that he must exit, either due to rezoning in T + 1 or due to n

consecutive droughts, from year T + 1 to year T + n. This exit situa-
tion can occur in several ways. These are rezoning in year T + 1 and
no n consecutive droughts, rezoning in year T + 1 and n consecutive
droughts, and no rezoning in year T + 1 and n consecutive droughts.
The combined probability of this happening is

P (L) + (1 − P (L)) · P (drought)n(t) .(8)

Up to year T , the farmer obtains the expected gains from farming in
each year. Therefore the profit from agriculture up to year T is

agprofit(T )= {P (L) + (1 − P (L)) · P (drought)n(t)}

{

T
∑

t=1

EG · e−rt

}

.

(9)

Upon exit, rewards are either obtained due to exit from rezoning or
losses from an n-year drought followed by a resale value of land and
capital from exit in the year T + n. Thus expected exit rewards are

exitprofit(T ) = P (L)Ue
−r(T +1) +(1 − P (L)) · P (drought)n(T )

×

⎧

⎨

⎩

resale · e−r(T +n(t)+1) +

T +n(t)
∑

t=T +1

droughtprofit(t) · e−rt

⎫

⎬

⎭

.

(10)

The total profit (Eprofit) obtained from farming and exit, therefore,
is the sum of equations (9) and (10) and given as
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(11)

So far we have not included the possibility for water-saving techno-
logical options. There is evidence in the literature of the influence of
water shortages on technology adoption decisions. For instance, drip ir-
rigation technology, even though it was first introduced in California in
1969, did not pick until 1977–1979. This coincided with severe droughts
in the region and higher oil prices (Carey and Zilberman [2002]). The
impact of droughts on inducing technology adoption has also been stud-
ied by Zilberman et al. [1995]. Shuchk, Frasier, Webb, Ellingson, and
Umberger [2005], using survey data for adoption of efficient irrigation
technology in drought-affected regions of Colorado, find that drought
indeed significantly improves the percentage of farms adopting mod-
ern irrigation technologies, with the farmers having the most reliable
sources of water as the major adopters. A crucial question then is how
the technology adoption decision is influenced when the water savings
resulting from such an adoption could be used for enhancing resilience
against sustained droughts.

The farmer may have a choice to adopt a water-saving technology
that reduces his water application rates and allows him to sustain
through longer drought periods. More efficient technologies may allow
the farmer to survive through drought periods by reducing water ap-
plications to minimum possible levels (Schuck et al. [2005]). However,
this comes at a sunk cost equal to the price of the new technology,
which is irreversible. Therefore, he is faced with a binary choice over
whether or not to adopt.

Let the cost of adoption be “ctech” and the choice of adoption be 1
when adopted and 0 when not adopted. The new “rainprofit” function
is derived as5
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rainprofit(t)

= {π · f(h) − ch(t)} · (1 − x(t) · (1 − xdot(t)) Λ till adoption

+ {π · fnew (h) − ch(t) − ctech} · x(t) · xdot(t)

Λ for the first year of adoption

+ {π · fnew (h) − ch(t)} Λ after adoption,

where xdot(t) = x(t) − x(t − 1).

(12)

Similarly, “droughtprofit” is obtained as

droughtprofit(t)

= {π · f(mets) − ch(t)} · (1 − x(t) · (1 − xdot(t)) Λ till adoption

+ {π · fnew (mets) − ch(t) − ctech} · x(t) · xdot(t)

Λ for the first year of adoption

+ {π · fnew (mets) − ch(t)} Λ after adoption,

where xdot(t) = x(t) − x(t − 1).

(13)

The model so far does not consider the behavioral aspects of decision
making in agriculture when faced with severe droughts. The behavioral
element of our model is based on accumulated evidence in economics
and psychology literature (see summary in Hurley and Shogren [2005]).
Assume that the farmer assigns higher weights to low probabilities
of droughts and lower weights to high probabilities of droughts (also
see Starmer [2000] and Ranjan and Shogren 2006). Let the weighting
function follow an inverse S-shape. Following Prelec [1998], we use a
two-parameter weighting function as

w(p) = e−θ ·(− ln p)γ

,(14)

where θ is the parameter that primarily determines elevation, and γ is
the parameter that primarily determines curvature. Elevation reflects
the inflection (reference) point at which the farmer switches from over-
estimating low probability events to underestimating high probability
events, that is, the degree of over- and underestimation. Curvature
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FIGURE 1. Subjective weighting of the probability of a drought.

captures the idea that the farmer become less sensitive to changes
in probability the further they are from the inflection point (Tversky
and Kahneman [1992] and Gonzalez and Wu [1999]). Figure 1 subse-
quently shows the subjective weighting of the probability of droughts
that converts an objective probability of once in 20 years (which
roughly reflects the drought frequency in Australia, Bureau of Meteo-
rology [2008]) drought into a subjective probability of once in 10 years
drought.

Further, so far we have assumed that per period additions to the
reservoir, either due to rainfall or due to allocation, are given by a
distribution with a certain mean and variance. However, when water
scarcity is climate change related, it is more likely that the mean rainfall
(and therefore the water allocation) would be downwardly adjusted
over time. Rainfall is assumed to come from a distribution, the mean
of which gets adjusted over time as

new mean =
[wt prior mean · prior mean] + [wt prior yr · prior yr]

(wt prior mean + wt prior yr)
,

(15)
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where “prior mean” is the mean rainfall up to the penultimate year,
“wt prior mean” is the weightage assigned to the mean rainfall up to
the penultimate year, “prior yr” is the rainfall of preceding year, and
“wt prior yr” is the weightage assigned to rainfall of preceding year.
Given the above characterization of the farmer’s problem, his task is
to select optimal water allocation rate and decide whether or not to
adopt the water efficient technology in order to maximize his profits.
Note that if the rewards from land rezoning are very high or the profits
from farming very low (when the price of water may become large),
the farmer’s objective may not be to maximize his stay in agriculture
any more. The measure of his resilience to droughts, as given by the
parameter n, may still indicate the length of drought that he can endure
before exiting. In order to further explore how these different aspects
influence his decision making, we provide an empirical illustration of
the above analytical model that best fits the above characterization.
We pick the case of lettuce farmers in Western Australia, who are
faced with the prospect of water curtailment in future due to declining
groundwater levels and increasing water demand from the urban and
environmental sectors.

3. Empirical illustration. We consider a lettuce farmer in West-
ern Australia, who may be faced with water restrictions in future. The
Appendix presents the parameters used for the base case simulations.
Currently, most of the water in Western Australia is derived from the
Gnangara Mound, which is a large underground reservoir for water
(Department of Environment [2005]). Historically, the Mound was con-
sidered as an unlimited source of water, but with increasing frequency
of droughts, the water levels have been declining. Declining ground wa-
ter levels have adversely affected the groundwater dependent ecosys-
tems over time. Additionally, the city of Perth in Western Australia is
the largest consumer of this underground water and has been making
increasing demands on this resource from a mining boom related pop-
ulation explosion. Current policy options for mitigating water scarcity
involve metering water use in agriculture and curtailing its allocation
to farmers (Brennan [2007]).

Given this brief background, assume that the farmer receives an an-
nual water allocation from the government, a proportion of which he
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FIGURE 2. Historical annual rainfall in mm (Xu et al. [2005]).

can carry over to the next year. Assuming he has no other sources of
water, his water reservoir stock would evolve as

reservoir(t + 1) = β · reservoir(t) + rainadj · allocation(t) − h(t),

(16)

where “rainadj” is a curtailment from his current allocation. It is
assumed that the government does not allocate any water during a
drought year. Water allocation is based upon the realized rainfall in
each year. For instance, if rainfall is 600 mm, it amounts to 6 megaliters
(ML) of water per hectare for the farmer. Figure 2 subsequently de-
picts the rainfall in the past 18 years, which has a mean and variance
of 8.038 and 1.0082, respectively.

The gross revenue function in lettuce farming is based upon Brennan
[2007] and is calibrated as

χ · (ϑ − exp(−η − κ · h(t))) − ς · exp(−ε · h(t))+ τ · (ϕ − δ · h(t)
2
),

(17)

where harvesting of water for farming is in ML and χ, ϑ, η, κ, ς, ε,
τ , ϕ and δ are parameters of the production function and are detailed



448 R. RANJAN AND S. ATHALYE

TABLE 1. Lettuce production function estimates for 60% and 90% DU.

Parameters Parameter values (60% DU) Parameter values (90% DU)

η −1.95 −1.63

χ 10,000 27,500

κ 0.86 1.24

ϑ 0.88 0.355

ς 4620 5580

τ 2.8 12.4

ϕ 7 9.8

δ 4.8 1.1

ε 0.044 0.038

Note: Aforementioned table shows parameter values selected for two technological op-

tions available to the farmers. Parameter values used for the calibration of the gross

margin function for the technology with 60% DU are shown in column 2 and for the

technology with 90% DU are shown in column 3.

in Table 1. These parameters are calibrated to mimic declining gross
revenue based upon empirical evidence.

In the aforementioned equation, the first term χ · (ϑ − exp(−η −
κ ·h (t)) when considered alone ensures that the gross margin plateaus
as harvesting increases; however, when considered together with the
last term τ · (ϕ − δ ·h(t)2) it leads to a decline in productivity as
water application exceeds a certain optimal level. The middle term
ς · exp(− ε ·h(t)) is an adjustment factor that helps calibrate the pro-
duction function to the observed data. The assumption related to a
decline in productivity is consistent with the empirical evidence in let-
tuce farming, which is caused by nitrogen leaching. The gross revenue
functions for the two sprinkler irrigation technologies are presented
in Figure 3. This function is inclusive of the cost of water, which is
$50/ML.

Sprinklers with 60% and 90% distribution uniformity (DU) are con-
sidered as two widely available technological options, though interme-
diary uniformity is also possible. Increase in the DU allows for more
efficient use of water. The farmer is assumed to have 60% uniformity
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FIGURE 3. Production function for lettuce under 60 and 90% DU and under
a much better technology possible in future.

for the base case. The technology with 90% DU comes at an additional
cost of about $8,165 per hectare, which may not be reverted back to
after investment.

3.1 Scenario description. In the base case scenario, we assume
that the farmer has a prediction over future water supply that is based
upon the mean and variance of past 18 years of rainfall. This data was
shown in Figure 2 previously. The predictions are generated using a
random number generator in GAMS for the mean and variances based
upon the empirical observation.

Short-term forecasts play a relatively minor role in the decision mak-
ing of farmers as compared to medium and long-term forecasts. There-
fore, the pattern generated by the random predictions could be con-
sidered as one possible long-term scenario under consideration by the
farmer, while he derives his long-term optimization path. The farmer
revises his expectation over the mean rainfall in each period as given by
equation (15) previously. In the base case the farmer does not adopt the
water saving technology, as there is enough rainfall in each year. The
year in which technology is adopted is presented in Table 2.
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TABLE 2. Year of water saving technology adoption.

Scenarios Scenario description Year of adoption

Base case No adoption

1 (µ = 6.038) Reduced expectation

of future rainfall

48

2 (µ = 6.038, weighted

risk of drought)

Increase in perceived

risk of droughts to

one in 10 years

34

3 (a = 0.8, b = 0.5) Higher probability of

land rezoning

48

4 (µ = 6.038, no mean

revision)

No revision of mean

rainfall based upon

new evidence

No adoption

5 (90% rainadj) Water curtailment by

policy maker

13

6 (initial reservoir =

15 ML)

High reservoir capacity No adoption

Also note that we restrict the reservoir capacity (or carry forward
capacity) to 5 ML of water. The number of years that a farmer could
survive in the wake of a severe drought, as given by n, goes to zero right
after the first year. This indicates that the farmer stays in farming only
dependent upon the rainfall and will be out of farming as soon as the
drought period starts. The expected profits from being in agriculture
summed up to time t (as given by the variable “agprofit”) are shown
in Figure 4.

Water abstraction, rainfall, and the reservoir levels are depicted in
Figure 5.

Next, we consider six variations from the base case that mimic var-
ious possibilities associated with farmer heterogeneity, policy inter-
ventions, reservoir capacity, and land rezoning probability. Scenario 1
studies the impact of a pessimistic expectation of future rainfall. In Sce-
nario 2, we bring in risk weighting by augmenting the subjective risks
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Note: A 200-year time horizon is selected in GAMS for numerical simulations, which

mimics an infinitely lived farmer. Results are depicted for the first hundred years for

ease of presentation here.

FIGURE 4. Expected agricultural profits until exit from farming.

associated with droughts. In the third scenario, the impact of a higher
probability of urbanization on technology adoption is explored. In the
fourth scenario we consider the case of a farmer who exhibits resilience
or inertia in revising his expectations of future rainfall based upon cur-
rent observations. In the fifth scenario the impact of policy intervention
through water curtailment is simulated. Finally, in the sixth scenario
the reservoir capacity is increased to allow for more water storage and
carryover to the next period.

3.2 Simulation results. Table 2 depicts the key results from the
scenario runs. In the first scenario, we lower the mean rainfall to 6.038
from 8.038 in order to observe the impact of an expectation of reduced
rainfall on farmer’s decision. The farmer adopts the technology in year
48. However, when the parameter c, which influences the gross rev-
enue function, in the 90% DU case is changed to 3.3, adoption happens
much earlier—in time period 20. This highlights the role of availability
of technological choices in influencing technology adoption. Marginal
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FIGURE 5. Rainfall, water abstraction, and reservoir levels under the base case.

improvements in technology discourage adoption as the costs of adop-
tion are too high and can only be profitably incurred when adoption
happens too far in future—when its discounted cost is lower. Note
that the decision to adopt at any time is based upon intertemporal
cost-benefit considerations. Therefore, it is cheaper to postpone costly
investments for future.

In the second scenario, we consider the role of a farmer’s subjective
risk perceptions over the probability of severe droughts in future in
influencing adoption. The base case has a 1 in 20 year chance of severe
drought. However, the subjective weighing of the risks increases this
chance to 0.11, that is, one in 10 years. The impact of this weighing is
that technology adoption happens much earlier, in year 34.

In the third scenario, we consider the impact of a higher land rezoning
possibility on technology adoption, keeping mean rain low at 6.038.
This is achieved by raising the parameter a to 0.8, which increases the
upper bound of maximum probability to 0.8. Surprisingly, this case
leads to adoption in year 48, similar to the base case. This happens
due to the exogenous nature of risk of rezoning and the associated
positive rewards from rezoning that do not encourage water saving. It
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FIGURE 6. Expected agricultural profits until exit from farming.

is, however, possible that when urbanization comes at a cost, water
saving options are encouraged. This result is consistent with an earlier
finding in the literature, called “impermanence syndrome” (Lockeretz
[1989]), that attributes inefficient farming to speculative rewards from
land rezoning (Figure 6).

In the fourth scenario, we do not allow for revision of mean rainfall
based upon current rain data, keeping the mean rain at 6.038. The
idea is that this case is typical of a farmer who is averse to revising
his beliefs and exhibits inertia or resilience in adapting to the changing
climate. This case leads to no adoption compared to the case when
revisions are allowed.

Revision of the mean rainfall could lead to lower future predictions
if current rainfall is lower, which reduces the mean. If the first couple
of years lead to a lower rainfall, the mean becomes lower than the
unrevised mean case, and the future forecasts are bound to be lower.

Figure 7 depicts the rainfalls under revised and unrevised means.
Note that the revised mean leads to under emphasis on more positive
rainfall outcomes and over emphasis on the pessimistic outcomes.
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FIGURE 7. Rainfall under revised and unrevised means.

This leads to lower expected “agprofits” in the revised mean case as
shown in Figure 8.

However, if the first couple of years lead to a higher rainfall, the
opposite situation is possible as well—projected rain in future would
be higher than the unrevised case. Therefore, when farmers consis-
tently update their beliefs over future rainfall, they are prone to be re-
silient to drought or exiting earlier, depending upon the current rainfall
situation.

In the fifth scenario, we consider the impact of a curtailment of the
water supply by the policy maker. This situation may arise despite
a good rainfall scenario as urban and environmental demand for wa-
ter are given precedence. In this case we lower the water supply by
10% through the “rainadj” parameter (“rainadj” = 0.9). In this case
technology adoption happens in the 13th year. In the final scenario,
we consider the impact of a higher reservoir capacity on the farmer’s
decision to adopt technology. Not surprisingly, there is no technology
adoption.
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FIGURE 8. Expected agricultural profits until exit under revised and unre-
vised means for rainfall.

4. Discussion. The fact that the base case scenario does not lead
to technology adoption is due to the expectation of an optimistic future
rainfall scenario. Even though the farmers revise their means, the ran-
dom realizations are still based upon a distribution with a high mean
rainfall. The first scenario corrects for this over optimism by reducing
the mean rainfall. Technology adoption happens but too far in future.
This is because the future costs of technology adoption occurring far
in future are low when considered in their present value terms. When a
farmer incorporates intertemporal considerations in his decision mak-
ing, future costs are discounted, thereby making it more attractive to
postpone costly expenditures until later on in future. The sunk cost of
capital discourages early adoption when the gains in water saving are
not high.

When the possibility of much better technology exists, adoption hap-
pens much earlier as the benefits from water saving overrides the high
costs of capital. Expectation of the possibility of severe droughts is
equally important as it reduces the time to technology adoption when
the risk of droughts is over weighted. Over weighting of risks has been
found to be prevalent in the literature and is more likely to be the
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norm than the exception. However, the extent of over weighting may
vary with population heterogeneity. A heterogeneous farming popula-
tion would imply that technology adoption happens gradually among
farmers, which in itself may have an added psychological influence over
further technology adoption by the rest of the population. This phe-
nomenon has been termed as “popularity weighting” in the literature
(Ellision and Feudenberg [1993]). Another important consideration is
the possibility of land urbanization in the future, which yields much
higher returns to the farmers than from staying in agriculture. This
could significantly influence the decision to adopt the technology when
the land may be urbanized in future with a high probability. The results
show that even when water is scarce, the possibility of land rezoning
discourages adoption. The fourth scenario takes the case of a farmer
that does not adjust his expectations over future rainfall based upon
current observations. This case is interesting as it highlights the pos-
sibility of both positive and negative outcomes in terms of adoption,
depending upon the present rainfall scenario. When water allocation is
curtailed, technology adoption happens earliest of all the cases. This is
an important outcome as it highlights the possibility of policy interven-
tion in influencing adoption. On one hand, the ability to carry forward
water encourages adoption, whereas on the other, a higher allocation of
water discourages adoption. A combination of the two choices could be
used to induce desirable levels of adoption by farmers. Finally, a higher
reservoir capacity neither leads to technology adoption nor enhances
resilience (by making n positive).

Most of the scenarios give a zero value for the resilience parameter
“n” right from the very beginning. This is because of low rainfall and
low starting levels of reservoir. In cases where reservoir capacity may
be high, it does not necessarily imply that resilience would be higher
either. The prospects of higher land value from urbanization do not
provide any incentives to save water. Technology adoption occurs only
for maximizing profits in agriculture, it is not done with the purpose of
enhancing resilience. It is likely that when the social costs associated
with exit from farming (such as loss of an agricultural lifestyle) are
an important consideration for the farmers, farmers would be more
inclined to adopt technology for enhancing resilience. Similarly, when
droughts might adversely affect the value of land and are so severe that
even the urban demand for agricultural land goes down, farmers may
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have a higher incentive to stay in agriculture and adopt measures that
build their resilience in the wake of repeated droughts.

Finally, introduction of water markets could induce efficient technol-
ogy adoption by raising the price of water, but unless the price is signif-
icant, there may not be enough incentive to adopt the technology with
higher DU. For instance, Brennan [2007] finds that when water prices
are raised to $200/ML from their base case of $50/ML, a farmer with
55% DU reduces his water application by 20%. Only when the added
benefits from water savings exceed the cost of capital will the better
technology be adopted. This is confirmed in our empirical exercise by
raising the price of water to $200/ML, which does not lead to adoption
of the better technology. Other studies as well have found little private
economic incentives for adoption geared towards enhancing resilience
and have advocated for government subsidies instead (Thomas et al.
[2007]).

5. Conclusion. In this paper we developed an economic model of
decision making under uncertainty for a farmer faced with long-term
water scarcity and urbanization pressure. A formula for farmer’s re-
silience was developed that measured his ability to survive long-term
droughts. Further, we derived the role of technological options in deter-
mining the resilience of farmers to sustained droughts. Several insights
have emerged out of the analysis. First, risk perception influences tech-
nology adoption choices, thereby affecting farmers’ ability to continue
in farming when faced with the prospect of long-term droughts. Fur-
ther, technological options that lead to marginal improvements in water
saving are not availed of by farmers. Second, heterogeneity among farm-
ers may determine who adopts and who does not. A farmer’s ability
to revise expectations over future water scarcity based upon current
and past observations plays a crucial role in technology adoption. A
farmer that does not revise his expectations of the mean rainfall based
upon past and current observations will overestimate the mean rain-
fall in an approaching drought scenario and therefore may not adopt
the technology. Third, land rezoning possibilities further distort the
choice over technology adoption and may make farmers less resilient to
droughts. Finally, economic factors such as the sunk costs of capital or
water prices are the least important in influencing adoption when the
new technology does not offer significant gains in water saving or when
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water prices do not capture the true opportunity cost of water. Yet,
command and control options such as water allocation and the ability
to carry forward water turned out to be highly effective in influencing
technology adoption.

There is a further need to explore social and behavioral influences
that may determine resilience in agriculture. Behavioral factors such
as probability weighting and belief revisions may have a significant in-
fluence on technology adoption, as the results have pointed out. Yet,
our understanding of such aspects is limited. An enhanced understand-
ing of such influences would help accurately predict farmers’ resilience
in agriculture. A farmer’s actions may also be influenced by the deci-
sions of the neighboring farmers, through a learning effect as has been
observed in the literature. Finally, understanding the nature of uncer-
tainty related to future water availability is also important for policy
purposes. This uncertainty could be either climatic (over which farmers
have limited control) or could be policy related.

APPENDIX: DERIVATION of n

Here, we provide the methodology for the derivation of the
value of n. At the end of the first year, reservoir dynamics is given as

reservoir(t + 1) = reservoir(t) · (1 − α) − mets.

At the end of the second year

reservoir(t + 2) = reservoir(t + 1) · (1 − α) − mets

= reservoir(t) · (1 − α)
2
− mets · ((1 − α) + 1).

At the end of the nth year

reservoir(t + n) = reservoir(t) · (1 − α)
n

−mets · ((1 − α)n−1 + Λ + (1 − α) + 1).

Using the formula for a geometric series

(1 − α)n−1 + Λ + (1 − α) + 1 =
[1 − (1 − α)n−1 ]

[1 − (1 − α)]
.
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Therefore,

reservoir(t + n)

= reservoir(t) · (1 − α)n − mets ·

(

[1 − (1 − α)n−1 ]

[1 − (1 − α)]

)

= mets.

Now, we consider a point where mets becomes equal to a reservoir
level at year (t + n). When the aforementioned equation is solved for
using Mathematica, we get

n(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log

(

(1 + α) · mets

mets + α · reservoir(t)

)

log (1 − α)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

The next integer larger or equal to this value will have the reservoir
level reduced to a level where there is no sufficient water to sustain
agriculture for yet another severe drought (Table A). Hence the ceiling
function is used. This finally gives equation (3).

TABLE A. Base case parameter values.

Parameter Definition Value Units

A Scaling parameter for

rezoning probability

0.5 Scalar

B Scaling parameter for

rezoning probability

0.5 Scalar

µ Mean for rainfall∗ 8.038 ML

σ Standard deviation for

rainfall

1.0082 ML

α Proportional decrease of

reservoir due to

evaporation and leakage

0.05 Scalar
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TABLE A. Continued.

Parameter Definition Value Units

Mets Minimum water application

required during severe

drought conditions to

avoid extensive crop

damage

4 ML

P The probability of a severe

drought where the

rainfall goes below µ – 3σ

0.05 Scalar

Resale The value recovered from

selling land and capital

after exit from farming

100,000 Dollars per

hectare

U Value of land from

urbanization

500,000 Dollars per

hectare

θ Scaling parameter for the

inverted S-shaped

weighing function

0.922 Scalar

γ Scaling parameter for the

inverted S-shaped

weighing function

0.784 Scalar

wt prior year Weightage given to rainfall

of the preceding year

1 Scalar

wt prior mean Weightage given to the

mean rainfall of all the

years up to the

penultimate year

(t − 2) Scalar

β Proportion of water that

can be carried forward

Scalar

Rainadj Water curtailment

parameter

1 Scalar

Ctech Cost of capital 8165 per

hectare

Dollars

∗This the historical mean, which gets revised with new rainfall data.
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ENDNOTES

1. Conventionally, resilience has been defined in two ways in the literature. The
first, termed as the “engineering resilience,” defines it as the speed of bouncing
back of any perturbed system (Pimm [1984]). The other, termed the “ecological re-
silience,” is about the amount of stress that the system can tolerate before flipping
from its original state to another stable but degraded state (Holling [1995], Car-
penter and Cottingham [1997]). Other measures exist as well. Keil, Zeller, Wida,
Sanim, and Birner [2008] derive a measure of drought resilience based upon reduc-
tion in consumption of basic household necessities. This study is based upon ENSO
related droughts in central Sulawesi, Indonesia.

2. The mets value for rice is 80%; for fruits, vegetables and other crops is 60%; and
for beef, dairy, sheep, and oilseeds is 40% (Quereshi, Connor, Kirby, and Mainuddin
[2007]).

3. In reality, a farmer may continue in agriculture despite the depletion of the
reservoir due to noneconomic benefits associated with farming such as rural lifestyle
choices. Psychological factors such as optimistic expectations over future water
scenarios may also delay exit. Incorporating noneconomic benefits is beyond the
scope of this paper; however, this implies that our model tends to underestimate
farmers’ drought resilience.

4. This can be derived as shown in the Appendix.

5. Technically, the farmer can dis-adopt, but numerically a constraint can be
imposed upon the model to disallow dis-adoption.
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