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We have described a new kind of continued fraction which is 
referred to as an F1,2-continued fraction. The F1,2-continued 
fraction arises from a subgraph (denoted as F1,2) of the Farey 
graph. We have given a geometric interpretation of the partial 
quotients and formulated an algorithm to find F1,2-continued 
fraction expansion of a number. We have also studied the ana-
logues of certain properties of regular continued fractions in 
the context of F1,2-continued fractions.
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1. Introduction

The action of the modular group Γ = PSL(2, Z) on the extended set of rationals 
Q̂ = Q ∪ {∞} defined by

(
a b

c d

)
· x
y

= ax + by

cx + dy
,
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where x, y ∈ Z, (x, y) = 1 with the usual convention that ∞ is represented by x0 (x �= 0)
has been studied, in various contexts. This action is transitive and the stabilizer of ∞ is 
the subgroup

{(
1 m

0 1

)
: m ∈ Z

}
∼= Z.

Jones, Singerman, and Wicks, in [3], define certain graphs based on this action. The 
diagonal action (given by g(α, β) = (gα, gβ)) of the modular group on Q̂ × Q̂ defines 
the suborbital graph Gu,N for every N ≥ 1 and u ∈ Z with (u, N) = 1 as follows: the set 
of vertices is Q̂ and the edges are given by α ∼ β ⇔ ∃ g ∈ Γ such that g(∞) = α and 
g( u

N ) = β. In fact, Gu,N is self-paired if and only if u2 ≡ −1(mod N) [3, Corollary 3.4]. 
Denote by Fu,N the subgraph of Gu,N whose vertex set is

{
x

y
: x, y ∈ Z, y > 0, (x, y) = 1 and N |y

}
∪ {∞}.

The vertex set for F1,2 is denoted by X in the remainder of this note.
The congruence subgroup

Γ0(N) =
{(

a b

c d

)
∈ Γ : N |c

}

defines the following equivalence relation on Q̂ by g1(∞) ∼=N g2(∞) for g1, g2 ∈ Γ, if 
g1Γ0(N) = g2Γ0(N). If g1(∞) = r

s and g2(∞) = x
y , we have g1(∞) ∼=N g2(∞) if and 

only if N |ry − sx. In fact, the vertex set of Fu,N is the equivalence class of ∞ in Q̂ for 
this relation [3].

The graph F1,1 is called the Farey graph [3]. The regular continued fraction of a real 
number is described in terms of the Farey graph and this is classical [4]. This motivates 
us to investigate whether there is an analogue of the regular continued fraction which is 
related to the graph F1,2. Hence we arrive at the following definition.

A finite continued fraction of the form

1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

(n ≥ 0)

or an infinite continued fraction of the form

1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an+ · · · ,

where b is an odd integer, a1, a2, . . . are even positive integers, and ε1, ε2, . . . ∈ {±1}, is 
called an F1,2-continued fraction.

The above definition makes these new continued fractions closely related in form to 
certain well-studied continued fractions known as semi-regular continued fractions (see 
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Kraaikamp [5]) and in particular to continued fractions with even partial quotients (see 
Schweiger [7]). The latter is referred to as the E.C.F. henceforth. They therefore satisfy 
several properties analogous to those of the regular continued fraction. These properties 
are summarized in Section 2.

On the other hand, the striking fact is the relation of this new continued fraction 
with the graph F1,2 and its properties (which are also recalled in Section 2). This vital 
geometric link is explored in great detail in the subsequent sections.

Section 3 devotes itself to studying finite F1,2-continued fractions and establishes a 
bijective correspondence between them and the vertices of F1,2, namely elements of X . 
Each finite F1,2-continued fraction is shown to correspond naturally to a path in F1,2

from ∞ to its value. This result should be compared with the result of [3] that continued 
fractions of the form c0 − 1

c1−
1

c2− · · · 1
cn

with ci ∈ Z correspond to shortest paths in 
the Farey graph from ∞ to its value. We also derive (for the special case of F1,2), the 
results of Değer, Beşenk and Güler [2] which relate certain infinite paths in suborbital 
graphs with continued fractions. More generally, the main result of this section may be 
compared to [1, Theorem 3.1].

In Section 4 we derive an algorithm to obtain the F1,2-continued fraction associated 
with any element of X and relate this to the classical definition of the E.C.F. given in [7].

Section 5 shows that any real number can be expressed as an F1,2-continued fraction 
and produces a geometric proof of the fact that an irrational number has a unique 
F1,2-expansion. This should be compared with analogous result of Kraaikamp and Lopes 
[6] regarding the E.C.F. expansion of an irrational number.

Section 6 is an elaborate study of the F1,2-expansions of elements of Q \ X . These 
are the only real numbers where the uniqueness of F1,2-expansion fails and this failure 
displays several patterns which prove useful in the subsequent analysis.

Section 7 deals with the important topic of the approximation properties of 
F1,2-continued fractions of real numbers. Schweiger [8] observed that the E.C.F. ex-
pansion has very poor measure theoretic approximation properties and this holds for 
F1,2-expansions too. However, the regular continued fraction has many classical best 
approximation properties, and one can pose analogous questions for the new continued 
fractions. For instance, a rational number p/q is called a best approximation of x ∈ R if 
for every rational number p′/q′ �= p/q with 0 < q′ ≤ q, we have |qx − p| < |q′x − p′|. It is 
a classical theorem that every convergent of the regular continued fraction of x is a best 
approximation of x and conversely (except in the case that x is a half-integer).

The central theme of [5] is to start with an alternate notion of best approximation 
which is satisfied by the convergents of the regular continued fraction and study those 
continued fraction expansions which improve these best approximation properties. Note 
that though the E.C.F. belongs to the class of continued fractions studied in [5], their 
convergents are not necessarily best approximations in this alternate notion.

In this light, it is an important achievement for the F1,2-continued fraction that a 
suitable modification of the notion of best approximation yields the theorems of Section 7
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that any best approximation is an F1,2-convergent and conversely, in almost all cases. 
Here the exceptions are once again the rationals which are not in X .

2. Preliminaries

We summarize the definitions and basic results of semi-regular continued fractions. 
For more details see [5].

A pair of finite or infinite sequences {εi}i≥1 and {ai}i≥0 with εi ∈ {±1}, a0 ∈ Z and 
for n ≥ 1, an ∈ N is called a semi-regular continued fraction when εn+1 + an ≥ 1 and 
in the infinite case an ≥ 2 infinitely often. A semi-regular continued fraction, when it is 
finite, is expressed as

a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εn
an

and when infinite, as

a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εn
an+ · · · .

The integers ai (i ≥ 0) are called the partial denominators of the continued fraction. 
The integers εi (i ≥ 1) are called partial numerators. The value of the expression

pk
qk

= a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εk
ak

is called the k-th convergent of the continued fraction and the sequence {pk/qk}k≥0 is 
called the sequence of convergents of this continued fraction. In fact, the sequence of 
convergents of a finite continued fraction is a finite sequence. The continued fraction

ai + εi+1

ai+1+
· · ·

is called the tail of the continued fraction at the i-th stage.

Remark 2.1.

(1) If εn = 1 and an ∈ N, n ≥ 1 then we have the regular continued fraction.
(2) If εn = ±1 and an is an even positive integer for n ≥ 1 with a0 ∈ 2Z then we get an 

E.C.F. (mentioned in Section 1).
(3) An F1,2-continued fraction yields an E.C.F. and vice-versa. Observe that x =

1
0+

2
b+

ε1
a1+

ε2
a2+ · · · if and only if 2x − b = ε1

a1+
ε2

a2+ · · · .

The following three results about semi-regular continued fractions are well known.
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Proposition 2.2. Suppose {pn

qn
}n≥0 is the sequence of convergents of a semi-regular con-

tinued fraction

a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εn
an+ · · ·

Then {pn} and {qn} satisfy the following recurrence relations

pn+1 = an+1pn + εn+1pn−1 and qn+1 = an+1qn + εn+1qn−1

where (p−1, q−1) = (1, 0), (p0, q0) = (a0, 1) and n ≥ 0.

Proposition 2.3. Suppose x and yn (n ≥ 1) are real numbers such that for every n ≥ 1,

x = a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εn
an + yn+1

,

such that

a0 + ε1
a1+

ε2
a2+

ε3
a3+

· · · εn
an+ · · ·

is a semi-regular continued fraction having value x. If pi/qi is the i-th convergent of the 
continued fraction then

x = pn + yn+1pn−1

qn + yn+1qn−1
. (2.1)

Proposition 2.4. Let x = a0 + ε1
a1+

ε2
a2+

ε3
a3+ · · · be a finite or infinite semi-regular 

continued fraction. Then the following hold.

(1) The sequence {qn}n≥1 is monotonically increasing if and only if εn + an ≥ 1, n ≥ 2.
(2) Suppose yn = εn

an+
εn+1

an+1+ · · · εn+k

an+k+ · · · . Then εnyn ∈ [ 1
an

, 1], n ≥ 0 and |qnx −pn| ≤
|qn−1x − pn−1|.

For an F1,2-continued fraction 1
0+

2
b+

ε1
a1+

ε2
a2+ · · · εn

an+ · · · , the expression

pk
qk

= 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εk
ak

for k ≥ 0 is called the k-th F1,2-convergent and the sequence {pk

qk
}k≥0 is called the 

sequence of F1,2-convergents. The expression εi
ai+

εi+1
ai+1+ · · · is referred to as the fin at the 

i-th stage. Observe, if yi is the fin at the i-th stage, then εi = sign(yi).

Theorem 2.5. Suppose x = 1
0+

2
b+

ε1
a1+

ε2
a2+

ε3
a3+ · · · is an F1,2-continued fraction 

and {pi }∞i=0 is the sequence of F1,2-convergents of x. Suppose (p−1, q−1) = (1, 0) and 
qi
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(p0, q0) = (b, 2). Let yi be the fin at the i-th stage of an F1,2-continued fraction of x. 
Then

(1) for i ≥ 0, pi+1 = ai+1pi + εi+1pi−1 and qi+1 = ai+1qi + εi+1qi−1;
(2) the sequence {qi} is strictly increasing;
(3) pi

qi
�= pj

qj
for i �= j;

(4) for i ≥ 1, |yi| ≤ 1;
(5) x = xn+1pn + εn+1pn−1

xn+1qn + εn+1qn−1
where xi = 1

|yi|
.

Proof. By assumption, x = 1
0+

2
b+

ε1
a1+ · · · εn

an
· · · . Hence, 2x = b + ε1

a1+ · · · εn
an

· · · is a 
semi-regular continued fraction. Suppose si/ti is the i-th convergent of 2x. Then

pi = si

qi = 2ti

Statement (1) follows from Proposition 2.2. Since ai ≥ 2, we have εi + ai ≥ 1 so that by 
statement (1), {qi} is strictly increasing. Statement (3) follows from statement (2) and 
the fact that (pi, qi) = 1. Statement (4) holds from Proposition 2.4(2). By Proposition 2.3

2x = sn + yn+1sn−1

tn + yn+1tn−1

so that (since xn+1 = 1
|yn+1| )

x = xn+1pn + εn+1pn−1

xn+1qn + εn+1qn−1

which is statement (5) of the theorem. �
We now recall a few results from [3] about the graph theoretic properties of F1,2.

Proposition 2.6. (See [3, Theorem 5.1].) Let x, y, r, s ∈ Z with (x, y) = 1 = (r, s), N |y
and N |s so that xy and rs are vertices of Fu,N . Then rs ∼ x

y in Fu,N if and only if either

(1) x ≡ ur mod N and ry − sx = N , or
(2) x ≡ −ur mod N and ry − sx = −N .

We have noted that G1,2 is self-paired. If a and b are adjacent vertices, we treat the 
pair of edges between a and b as one edge only.

Proposition 2.7. (See [3, Corollary 5.13].) G1,2 is a forest. In particular, F1,2 is a tree.
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Fig. 1. A few vertices and edges of F1,2 on the interval (0, 1).

Recall that the vertex set of F1,2 is

X =
{

p

2q : p, q ∈ Z , q > 0, (p, 2q) = 1
}
∪ {∞}. (2.2)

Since F1,2 is a tree and ∞ ∈ F1,2, we have the following statement.

Corollary 2.8. There is a unique path (of edges in F1,2) from ∞ to every point in X .

Let x ∈ X . Suppose the path from ∞ to x is given by

∞ ∼ P0 ∼ P1 ∼ · · ·Pk ∼ · · · ∼ Pn = x. (2.3)

For convenience, we replace ∼ by an arrow pointing towards x at every stage in (2.3) so 
that it is expressed as

∞ → P0 → P1 → · · · → Pk → · · · → Pn = x.

By the distance between x, y ∈ X , we mean the number of edges required to join x
and y in F1,2. We represent the edges of F1,2 as hyperbolic geodesics in the upper half 
plane

U = {z ∈ C : Im(z) > 0},

that is, as Euclidean semicircles or half lines perpendicular to the real line (see [3]). See 
Fig. 1 where a few edges are displayed for vertices lying in (0, 1).

Lemma 2.9. (See [3, Corollary 4.2].) No two edges of F1,2 cross in U .

Corollary 2.10. The set of vertices of a connected component of the subgraph of F1,2
obtained by deleting ∞ is given by (k, k + 1) ∩ X for some k ∈ Z.

Proof. Let b = 2k + 1 so that b/2 is the midpoint of the interval (k, k + 1). Set for 
each n ∈ N, Pn(+) = b

2 + n
2(n+1) and Pn(−) = b

2 − n
2(n+1) . Then observe that b

2 is 
connected to Pn(±) for every n ∈ N and the maximum Euclidean distance can be 
travelled in n steps from x in X \ {∞} by following b → P1(+) → · · · → Pn(+) or 
2
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b
2 → P1(−) → · · · → Pn(−). So the (Euclidean) diameter of the connected component 
is lim

n→∞
2 · n

2(n+1) = 1. Thus the connected component containing b/2 is contained in 

(k, k + 1) ∩ X .
On the other hand, if x ∈ (k, k + 1) ∩ X , there exists n ∈ N such that Pn(−) < x <

Pn(+). By Lemma 2.9, x must be connected to ∞ via b/2. Thus, the result follows. �
From the proof of Corollary 2.10, we also obtain the following result.

Corollary 2.11. If x ∈ X \ {∞}, then x is connected to ∞ through 2�x�+1
2 .

3. Finite F1,2-continued fractions

Theorem 3.1.

(A) The path in F1,2 from ∞ to x ∈ X defines a finite F1,2-continued fraction of x.
(B) The value of every finite F1,2-continued fraction belongs to X and the continued 

fraction defines a path in F1,2 from ∞ to its value with the convergents as the 
vertices.

Proof. To prove statement (A), let x ∈ X . Then by Corollary 2.8, there is a path from 
∞ to x in F1,2. Suppose

∞ → P0 → P1 → · · · → Pk → · · · → Pn = x,

where Pk = pk

2qk for some pk ∈ Z, qk ∈ N with (pk, 2qk) = 1. By Corollary 2.11, P0 = b
2

where b = 2�x� + 1. We complete the proof by induction on the distance of x from ∞.
By induction hypothesis, any vertex Pi = pi

2qi on the path having distance i + 1
(1 ≤ i ≤ k) from ∞ is represented by the continued fraction

pi
2qi

= 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εi
ai
.

Since Pk → Pk+1 and Pk−1 → Pk, by Proposition 2.6, we have 2pk+1qk − 2qk+1pk = 2ek
and 2pkqk−1 − 2qkpk−1 = 2ek−1 where ei = ±1 for each i. Hence,

pk+1qk − qk+1pk = ek (3.1)

pkqk−1 − qkpk−1 = ek−1 (3.2)

so that pk+1qk ≡ −ek−1ekpk−1qk (mod pk). Since pk and qk are coprime, we have pk+1 ≡
−ek−1ekpk−1 (mod pk) and hence

pk+1 = ak+1pk − ek−1ekpk−1

for some ak+1 ∈ Z. Substituting this in (3.1) and using (3.2), we get
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(ak+1pkqk + ek−1ek(ek−1 − pkqk−1) − qk+1pk = ek

⇒ (ak+1qk − ek−1ekqk−1)pk − qk+1pk = 0

⇒ qk+1 = ak+1qk − ek−1ekqk−1 (since pk �= 0).

Now, by setting εk+1 = −ek−1ek, we have

pk+1 = ak+1pk + εk+1pk−1

qk+1 = ak+1qk + εk+1qk−1

Since pk+1 and 2qk+1 satisfy the same recurrence relation with the initial condition 
(p−1, q−1) = (1, 0) and (p0, 2q0) = (b, 2), we have

Pk+1 = pk+1

2qk+1
= 1

0+
2
b+

ε1
a1+

ε2
a2+

· · · εk
ak+

εk+1

ak+1
.

Since pk−1, pk and pk+1 are odd integers and pk+1 = ak+1pk + εk+1pk−1, we have ak+1
is an even integer so that the path from ∞ to x defines a finite F1,2-continued fraction 
of x given by

x = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

.

To prove statement (B), suppose

1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

is an F1,2-continued fraction. Let P0 = b
2 and let Pi = 1

0+
2
b+

ε1
a1+

ε2
a2+ · · · εi

ai
, for each 

1 ≤ i ≤ n. By using induction on i, we will show that Pi ∈ X for each 0 ≤ i ≤ n. It is 
easy to see that P0, P1 ∈ X . Since Pi is a rational number, it is si/ti for si, ti ∈ Z with 
(si, ti) = 1 and ti > 0.

Then sk = aksk−1 + εksk−2 and tk = aktk−1 + εktk−2 for k ≥ 2. By induction 
hypothesis, P0, P1, . . . , Pk−1 ∈ X so that si is odd and ti is even with ti−1 < ti for each 
0 ≤ i ≤ k − 1. Therefore using the above relations, sk is odd and tk is even so that 
x = Pn ∈ X and tk−1 < tk (since ak ≥ 2 > |εk|).

Now, by induction hypothesis, Pi−1 → Pi, for 1 ≤ i ≤ k − 1. Therefore,

sktk−1 − tksk−1 = (aksk−1 + εksk−2)tk−1 − (aktk−1 + εktk−2)sk−1

= εk(sk−1tk−2 − tk−1sk−2)

= ±2

so that Pk−1 → Pk. So the given F1,2-continued fraction defines the following path from 
∞ to the value (namely, x) of the given continued fraction

∞ → P0 → P1 → · · · → Pk → · · · → Pn = x. �
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Corollary 3.2. The directions assigned to the edges of a path in F1,2 from ∞ to x satisfy 
the following property for a/b, c/d ∈ X :

a

b
→ c

d
if and only if a

b
∼ c

d
and b < d.

Proof. By Theorem 3.1, a/b and c/d are consecutive convergents of x and if a/b is 
k-th convergent then c/d is (k + 1)-th convergent. Therefore, the corollary follows from 
Theorem 2.5(2). �

To interpret the parameters of an F1,2-continued fraction geometrically, we introduce 
the following definitions. Let Q ∈ X be such that it is at least two units away from ∞
(that is, at least two edges are required to join Q to ∞). Suppose the unique path from 
∞ to Q is given by

∞ → P0 → P1 → P2 → · · · → Pn = Q

where n ≥ 1. Then Q is called direction retaining if either Pn−2 < Pn−1 < Q or Pn−2 >

Pn−1 > Q where P−1 = ∞. If Q is not direction retaining, we call it direction changing.
The edges (which are semicircles) emanating from a vertex Q in a given direction (left 

or right) are ordered in the following way. Suppose the path from ∞ to Q is as in the 
previous paragraph. Suppose that in the given direction, the farthest (in Euclidean sense) 
vertex adjacent to Q but different from Pn−1 is Q1. Then the edge joining Q to Q1 is 
called the first semicircle emanating from Q in the given direction. The edge joining Q to 
the farthest vertex in the same direction different from Pn−1 and Q1 is called the second
semicircle emanating from Q in that direction. For any k ≥ 1, we define inductively the 
k-th semicircle emanating from Q in the given direction.

Proposition 3.3. Let x ∈ X \{∞} be such that it is not a half integer. Suppose, for n ≥ 1,

∞ → P0 → P1 → P2 → · · · → Pn = x

and

x = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

.

Then

(1) ε1 = −1 if and only if x < b
2 (and hence, P1 < P0 = b

2);
(2) for i ≥ 1, εi = −1 if and only if Pi is direction retaining;
(3) for i ≥ 1, Pi is on the k-th semicircle in the direction of Pi emanating from Pi−1 if 

and only if ai = 2k.
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Proof. Suppose Pi = pi

qi
. Then p1

q1
= b

2 + ε1
2a1

implies P1 = P0 + ε1
2a1

. The statement (1) 
follows. Observe that

pi+1

qi+1
− pi

qi
= −εi+1

qi−1

qi+1

(
pi
qi

− pi−1

qi−1

)
(3.3)

Statement (2) now follows from (3.3). Next, suppose P ′
i = p′

i

q′i
is another vertex such 

that Pi−1 → P ′
i with Pi and P ′

i lying in the same side of Pi−1. Suppose the i-th partial 
quotient of P ′

i is εi/a′i. Then

Pi − P ′
i = εiqi−1

q′i

(
pi−1

qi−1
− pi−2

qi−2

)
(ai − a′i)

= qi−1

q′i
(Pi − Pi−1)(a′i − ai) (using (3.3)) (3.4)

Statement (3) follows from (3.4) by considering all possibilities for a′i. �
The following corollary to Proposition 3.3 tells that the “farthest” points (real num-

bers) connected to ∞ through a given point in X are in fact rational numbers. As 
mentioned in the introduction, these results are related to those of [2, Section 4].

Corollary 3.4. Let {αi}i ≥ 1 be a sequence of elements in X \{∞} such that αi+1 lies on 
the first semicircle emanating from αi for i ≥ 1 and αi is direction retaining for i ≥ 2. 
Then {αi} converges to a rational number.

Proof. Note that the given conditions ensure that the path

α1 → α2 → · · · → αi → · · ·

is the farthest possible path from α1 in the direction given by α2. Let

α1 = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

.

Then Proposition 3.3 ensures that the limit of {αi} is given by

1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an+

±1
2+

−1
2+

−1
2+

−1
2+ · · ·

with ±1 coming from the choice of α2. Therefore the corollary holds as

1 = 1
2+

−1
2+

−1
2+ · · · . �
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4. An algorithm to find the F1,2-continued fraction

In the previous section we saw that any x ∈ X has a unique (finite) F1,2-continued 
fraction. Here we derive an algorithm to find this F1,2-continued fraction for a given x
in X .

Theorem 4.1. Given any x ∈ X , the F1,2-continued fraction expansion

x = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an

,

is obtained as follows: b = 2�x� + 1 and for (1 ≤ i ≤ n), setting y1 = 2x − b,

(1) ai = 2
⌊1

2

(
1 + 1

|yi|

) ⌋
,

(2) εi = sign(yi),
(3) yi+1 = 1

|yi| − ai.

In fact, n is the smallest non-negative integer for which yn+1 = 0.

Proof. Let yi be the fin at the i-th stage of the F1,2-expansion of x, namely

yi = εi
ai+

εi+1

ai+1+
· · · εn

an
.

Then b = 2�x� + 1 (by Corollary 2.11) and y1 = 2x − b. For 1 ≤ i ≤ n, we also have

yi = εi
ai + yi+1

. (4.1)

By Proposition 2.5(4), |yi+1| ≤ 1 and ai is a positive even integer. This means that the 
denominator in (4.1) is positive and hence εi = sign(yi) and ai is the nearest even integer 
to 1/|yi|. This gives us steps (1), (2) and (3) of the algorithm.

The last claim is also clear from the fact that the denominator in (4.1) is non-zero for 
1 ≤ i ≤ n and yn = εn

an
by definition, giving yn+1 = 0. �

Remark 4.2. The fundamental step in the above algorithm is the process of writing 
x = |yi| ∈ [0, 1] in the form

x = 1
2k + εT (x) , (4.2)

where 2k = ai is a positive even integer, ε = ±1 and T (x) = |yi+1| ∈ [0, 1].
For a precise definition of the map T : [0, 1] −→ [0, 1], we subdivide [0, 1] into disjoint 

intervals of the form B(+1, k) = ( 1
2k , 

1
2k−1 ] and B(−1, k) = ( 1

2k+1 , 
1
2k ] for all integers 

k ≥ 1. Now, we define the map
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T (x) = ε

(
1
x
− 2k

)
, where ε = ±1, x ∈ B(ε, k). (4.3)

Essentially, 2k is the nearest even integer to 1
x and T (x) = | 1x − 2k|.

This map T has been studied classically and the iteration of (4.2) results in the E.C.F. 
expansion of y1 (Schweiger [7]).

5. F1,2-continued fractions of real numbers

Theorem 5.1. Every real number has an F1,2-continued fraction.

Proof. In the concluding remarks of the previous section, we had seen that the 
F1,2-expansion of x ∈ X is obtained by repeated iteration of the map T starting from 
y1 = 2x − b with b = 2�x� + 1. We claim that this repeated iteration (infinitely many 
times, if necessary) produces an F1,2-expansion for any real number x.

In other words, while it is clear that the n-th iteration of T on y1 = 2x − b yields the 
relation (for n ≥ 1)

x = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an + yn+1

, (5.1)

we need to show that the (infinite) continued fraction

1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an+ · · ·

converges to x.
To prove this, we note that (5.1) implies that (2.1) holds (see Theorem 2.5) and hence 

we have
∣∣∣∣x− pn

qn

∣∣∣∣ = 2|yn+1|
qn(qn + yn+1qn−1)

.

The right side above converges to 0 because qn are monotonically increasing integers 
(Theorem 2.5) and |yn| ≤ 1 as |yn| = T (n−1)(|y1|). This completes the proof of the 
theorem. �

Next, we explore whether every real number has a unique F1,2-continued fraction. In 
fact, if x is a rational number not in X , there are exactly two F1,2-continued fractions 
of x and we discuss this in Section 6. On the other hand, an irrational number has a 
unique F1,2-continued fraction expansion and this is our next result.

Proposition 5.2. Every irrational number has a unique infinite F1,2-continued fraction.
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Proof. Suppose y1 is the fin at the first stage of an F1,2-continued fraction of x so that

x = 1
0+

2
b + y1

.

Since x is not an integer, |y1| < 1. Hence 2x − 1 < b < 2x + 1 so that b has only one 
possible value.

Let there be two distinct F1,2-continued fractions of a given irrational x. Suppose 
{Pk}k≥0 and {P ′

k}k≥0 are the sequences of F1,2-convergents corresponding to these 
F1,2-continued fractions. We have shown in the above discussion that P0 = P ′

0. Sup-
pose N is such that Pi = P ′

i for every i ≤ N but PN+1 �= P ′
N+1.

Without loss of generality, let PN+1 < P ′
N+1. Since no edges cross each other in the 

graph F1,2, we must have PN+1 < x < P ′
N+1. Suppose for i ∈ N, αi, βi ∈ X are such 

that α1 = PN+1 and β1 = P ′
N+1 with αi+1 > αi and βi+1 < βi so that αi+1 and 

βi+1 are the farthest (in Euclidean sense) points from αi and βi respectively, towards x
connected by an edge. Suppose α and β are the limits of {αi} and {βi} respectively, then 
α ≤ x ≤ β. By Corollary 3.4, α and β are both rational so that α < x < β. Observe, 
PN+i ≤ αi < α < x and P ′

N+i ≥ βi > β > x. Hence, {Pi}i≥0 and {P ′
i}i≥0 do not 

converge to x and this contradicts the fact that they are sequences of F1,2-convergents 
of x. �
6. Infinite F1,2-continued fractions of rational numbers

We have already seen that every real x /∈ Q \ X has a unique F1,2-expansion and 
hence unique fins at every stage. In this section, on the other hand, we will show that 
if x ∈ Q \ X , it has exactly two F1,2-expansions both of which are eventually constant. 
The fin at the i-th stage is unique for all but finitely many values of i and when x has 
more than one fin at the i-th stage, it has exactly two fins at that stage.

Proposition 6.1. Suppose x ∈ R has an eventually constant F1,2-continued fraction. Then 
x ∈ Q if and only if all but finitely many partial numerators are −1 and all but finitely 
many partial denominators are 2.

Proof. Suppose x = 1
0+

2
b+

ε1
a1+

ε2
a2+ · · · εn

an+ · · · is such that ai = ai+1 and εi = εi+1 for 
each i ≥ m. Then for some y ∈ R (a fin), we have εm

am+y = y so that y2 + amy − εm = 0. 
Thus, y is rational if and only if am = 2 and εm = −1. Since x is rational if and only if 
y is rational, the result follows. �
Proposition 6.2. Suppose x ∈ Q \ X . Then

(1) A fin of x at any stage is a quotient of two odd integers.
(2) Fins of x are ±1 for all but finitely many. For a fixed F1,2-continued fraction of x

with fins yi, we define N = max({0} ∪ {i ≥ 1|yi �= ±1}). If N ≥ 1, then yN is the 
reciprocal of an odd integer.
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(3) The i-th fin yi of x is unique (independent of the F1,2-continued fraction) for i ≥ 1
except for yN+1 (N as in statement (2)), which takes two possible values. Here N
also depends only on x and not on the F1,2-continued fraction chosen.

(4) There are at least two F1,2-continued fraction expansions of x. In fact, they are both 
infinite and eventually constant.

Proof. Since y1 = 2x −b where b is odd, y1 is the quotient of odd integers. Statement (1) 
follows by induction since we have yi+1 = 1

|yi| − ai (by the definition of fin). Suppose 
yi = ri

si
�= ±1. Again using the relation between successive fins, we get |si| > |ri| = |si+1|

so that the absolute values of both numerator and denominator are decreasing. Hence, 
for some i ≥ 1, yi = ±1. Let N be as in statement (2), then yN+1 = ±1 which implies 
yN+k = −1 for k ≥ 2. In particular, if N ≥ 1, yN is a reciprocal of an odd integer.

To establish statement (3), we proceed by induction. If N = 0 then y1 = ±1 and we 
have nothing to prove. If N ≥ 1 we have |y1| = |2x −b| < 1 and so there is a unique choice 
of odd integer b at this stage. Hence y1 is unique. In fact, for every stage i < N , there 
is a unique choice of even integer ai such that |yi+1| = | 1

|yi| − ai| < 1, which makes yi+1
unique. Since yN+1 = ±1 and the succeeding fins are −1, we get N to be independent 
of the particular F1,2-continued fraction.

Next we observe that if 1
yN

= d is an odd positive integer, there are two nearest even 

integers so that d = 2�d+1
2 � −1 = 2�d−1

2 � +1 and 1 = 1
2+

−1
2+

−1
2+ · · · , −1 = −1

2+
−1
2+

−1
2+ · · · . 

Thus, statement (4) follows. �
Corollary 6.3. A fin of x ∈ R is ±1 if and only if x ∈ Q \ X .

Proof. Suppose a fin of x is ±1. Then clearly x ∈ Q. Since 1 = 1
2+

−1
2+

−1
2+ · · · and 

−1 = −1
2+

−1
2+

−1
2+ · · · , x has an infinite F1,2-continued fraction, so that x ∈ Q \ X . The 

converse is statement (2) of Proposition 6.2. �
Lemma 6.4. Let for each i ∈ N, εi = ±1 and ai ∈ 2Z. Then the following hold.

(1) If 1 = ε1
a1+

ε2
a2+ · · · , then ε1 = 1, εi+1 = −1 and ai = 2 for every i ≥ 1.

(2) If −1 = ε1
a1+

ε2
a2+ · · · , then εi = −1 and ai = 2 for every i ≥ 1.

Proof. Suppose −1 = ε1
a1+

ε2
a2+ · · · where εi and ai are as stated in the lemma. Then,

−1 = 1
0+

2
−1+

ε1
a1+

· · · (6.1)

defines an F1,2-continued fraction. By Theorem 3.1, there is a unique path from ∞ to 
each convergent Pn via the convergents Pi with 0 ≤ i < n. Observe P0 = −1

2 . Note that 
ai = 2 and εi = −1 for each i ∈ N is a solution of Eq. (6.1). In this case, Pi+1 lies in the 
first circle emanating from Pi (so that it is the farthest vertex towards left of Pi) and the 
path is direction retaining. Since no two edges intersect (Lemma 2.9), it is not possible to 
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have one more sequence of F1,2-convergents of −1 via −1/2. This proves statement (2). 
Statement (1) can be proved using a similar argument. �
Theorem 6.5. For every x ∈ Q \ X , there are exactly two F1,2-continued fraction expan-
sions of x. In fact, there exist a unique pair of positive odd integers b, b′, a unique non-
negative integer n, a unique pair of finite sequences {a1, a2, . . . , an} and {a′1, a′2, . . . , a′n}
of positive even integers and a unique sequence {ε1, ε2, . . . , εn} of ±1 such that

x = 1
0+

2
b+

ε1
a1+

ε2
a2+

· · · εn
an+

−1
2+

−1
2+

−1
2+ · · ·

= 1
0+

2
b′+

ε1
a′1+

ε2
a′2+

· · · εn
a′n+

1
2+

−1
2+

−1
2+ · · ·

where n = 0 if and only if x ∈ Z, and in this case, b = b′ + 2; and when n ≥ 1, b = b′, 
ai = a′i (1 ≤ i ≤ n − 1) and an = a′n + 2.

Proof. In view of Proposition 6.2(4), it is enough to show that there are at most two 
F1,2-continued fractions for every element in Q \ X .

Let x ∈ Q \ X and let x be an integer. Suppose y1 is the fin at the first stage of an 
F1,2-continued fraction of x so that

x = 1
0+

2
b + y1

. (6.2)

Since |y1| ≤ 1 and y1 = 2x − b (which is an integer), we have y1 = ±1 so that b = 2x ±1. 
Therefore, there are exactly two choices of b and their difference is 2. We conclude by 
using Lemma 6.4 that x has exactly two F1,2-continued fractions with n = 0.

Next, let x ∈ Q \ X but x /∈ Z. Again, suppose b and y1 are as in (6.2). Since 2x − b

is not an integer, y1 �= ±1. Thus |y1| < 1 and b has only one choice, namely, the odd 
integer nearest to x. For every F1,2-continued fraction of x, we have a solution of the 
following equation:

y1 = ε1
a1+

ε2
a2+

· · · εn
an + yn+1

(6.3)

where n ≥ 1, a1, a2, . . . , an are positive even integers, εi = ±1 (1 ≤ i ≤ n) and 
0 < |yn+1| ≤ 1. Suppose in Eq. (6.3), n ≥ 1 is such that there are unique solutions 
for a1, a2, . . . , an−1 and ε1, ε2, . . . , εn−1 but (an, εn, yn+1) has more than one choices. 
Our assumption implies that yn is unique, hence so is εn. Let αn, α′

n be two possible 
values of an and let Pn and P ′

n be the corresponding convergents. Since no two edges 
of F1,2 cross (Lemma 2.9), x lies between Pn and P ′

n. Again by Lemma 2.9, Pn and P ′
n

lie in consecutive circles emanating from Pn−1 in the same direction. Thus, difference 
between αn and α′

n is exactly 2. In particular, an has at most two possible values sat-
isfying Eq. (6.3). Assume that there are two distinct possible values of an and denote 
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by βn+1 (and β′
n+1) the value of yn+1 corresponding to αn (respectively, α′

n). Using 
Proposition 4.1(3), |βn+1 − β′

n+1| = 2 so that βn+1 = ±1, β′
n+1 = ∓1 respectively. By 

Lemma 6.4, the continued fractions of x will be obtained by using 1 = 1
2+

−1
2+

−1
2+ · · · and 

−1 = −1
2+

−1
2+

−1
2+ · · · . Thus, we have shown that there are exactly two F1,2-continued 

fractions for every element in Q \ X . �
Example 1. For x = 2/7, we have, b = b′ = 1, n = 2, a1 = a′1 = 2, a2 = 4, a′2 = 2, ε1 = −1
and ε2 = 1. The corresponding fins are {−3

7 , 
1
3 , −1, −1, −1 . . .} and {−3

7 , 
1
3 , 1, −1, −1 . . .}

respectively. The corresponding convergents are

{
1
2 ,

1
4 ,

5
18 ,

9
32 ,

13
46 · · ·

}
and

{
1
2 ,

1
4 ,

3
10 ,

7
24 ,

11
38 ,

15
52 · · ·

}

respectively.

Corollary 6.6. There are only finitely many common F1,2-convergents of the two 
F1,2-continued fraction expansions of x.

The next result characterizes the number N defined in Proposition 6.2 by the two 
sequences of F1,2-convergents of x ∈ Q \ X .

Corollary 6.7. Suppose x ∈ Q \ X and pk

qk
∈ X is the k-th convergent of one of the 

F1,2-continued fractions of x. Then pk

qk
appears in both sequences of F1,2-convergents of 

x if and only if k ≤ N − 1, where N is as defined in Proposition 6.2.

We call the F1,2-continued fraction of x ∈ Q \ X obtained by using the smallest even 
integer greater than 1/|yN | if N ≥ 1 (see Theorem 6.2(2) for yN ), the first F1,2-continued 
fraction of x. If N = 0, x is an integer and there are two choices for b (namely, 2x ± 1). 
In this case, the F1,2-continued fraction obtained by setting b = 2x + 1, will be called 
the first F1,2-continued fraction. The other F1,2-continued fraction of x ∈ Q \X is called 
the second F1,2-continued fraction of x.

Here we record a couple of lemmata which are useful in proving several results after-
wards.

Lemma 6.8. Suppose −1 is the fin at the (i + 1)-th stage of an F1,2-continued fraction 
of x. Then for every k ≥ 0, qi+k − qi+k−1 = 2s, where x = r

s with (r, s) = 1.

Proof. Suppose x = r/s with (r, s) = 1. Use statement (5) of Theorem 2.5 for n = i to 
get x = pi−pi−1

qi−qi−1
(since the (i +1)-th fin is −1). Since (r, s) = 1, we have qi−qi−1 = 2ls for 

l ∈ N. In both the cases, we can show that |qi−1x −pi−1| = 2
qi−qi−1

. Thus |qi−1r−pi−1s|
s =

2
2ls which implies l = 1 (since |qi−1r − pi−1s| is an integer). As qi+k = 2qi+k−1 − qi+k−2
(recall ai+k = 2 and εi+k = −1) for every k ≥ 0, the lemma follows. �
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Lemma 6.9. Let {pi

qi
}i≥0 be a sequence of F1,2-convergents of x ∈ R. Let p/q ∈ X which 

is not in this sequence of convergents. There exists a unique solution of the following 
system of equations in α, β

(
p

q

)
= α

(
pn+1
qn+1

)
+ β

(
pn
qn

)
. (6.4)

In fact, the solution (α, β) ∈ Z2 and if qn ≤ q ≤ qn+1, then |β| ≥ 2.

Proof. Since the determinant of the coefficient matrix of Eqs. (6.4) is pn+1qn−qn+1pn =
±2 �= 0, it has a unique solution. In fact, α = ±(pqn − qpn)/2 and β = ±(pn+1q −
qn+1p)/2. In particular, they are integers.

Next, suppose qn ≤ q ≤ qn+1. To prove that |β| ≥ 2, we require to show that 
p/q � pn+1/qn+1. In fact, if p/q ∼ pn+1/qn+1, then q < qn+1 and hence the unique 
path from ∞ to pn+1/qn+1 is via p/q. This contradicts our assumption that p/q is not a 
convergent. �

We conclude this section by describing the relation between the two sequences of 
F1,2-convergents of any x ∈ Q \ X . As a consequence, we also obtain a simple criterion 
for an element of X to be an F1,2-convergent of x.

Proposition 6.10. Let x = r
s ∈ Q \ X . Suppose {pk

qk
}k≥0 and {p′

k

q′k
}k≥0 are the sequences 

of the first and second F1,2-convergents of x. Let N be the smallest number such that 
pN

qN
�= p′

N

q′N
. Then, for every k ≥ 0,

(1) N = 0 ⇒ qk = q′k = 2k + 2;
(2) N ≥ 1 ⇒ q′N+k < qN+k < q′N+k+1;

(3) |qN+k−1x − pN+k−1| = |q′N+k−1x − p′N+k−1| =
1
s
;

(4) q′N+k = (2k+1)qN+k− (2k+2)qN+k−1 and p′N+k = (2k+1)pN+k− (2k+2)pN+k−1.

Further, any p/q ∈ X with q > qN−1 is an F1,2-convergent of x if and only if |qr−ps| = 1.

Proof. If N = 0, then x is an integer. Hence statement (1) follows because q0 = q′0 = 2
by definition and the difference between consecutive denominators is 2s = 2 from 
Lemma 6.8.

Denote the partial denominators and partial numerators of the first F1,2-continued 
fraction of x by ai and εi respectively. Similarly, denote the partial denominators and 
partial numerators of the second F1,2-continued fraction of x by a′i and ε′i respectively. If 
N ≥ 1 and d = 1

|yN | , then aN = 2�d+1
2 �, a′N = 2�d−1

2 � and εN = ε′N . Since qN−1 = q′N−1, 
we have, by Theorem 2.5(1), qN = q′N + 2qN−1 so that qN > q′N . By Lemma 6.8, the 
difference of successive elements of {qN+k}k≥0 and {q′N+k}k≥0 is the same constant and 
this establishes (2).
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Statement (3) was verified in the proof of Lemma 6.8, and statement (4) can be verified 
by induction on k in a way similar to the proof of statement (2).

Suppose p/q ∈ X is such that |qr− ps| = 1. If N = 0, then statement (1) and (4) give 
that p/q is an F1,2-convergent of x. Let N ≥ 1 and assume that p/q is not a convergent 
of the first F1,2-continued fraction of x. This implies that qN+k−1 < q ≤ qN+k for some 
k ≥ 0 (using statement (3) and s ≥ 3). By Lemma 6.9, q = βqN+k−1 + αqN+k and 
p = βpN+k−1 + αpN+k for α, β ∈ Z with |β| ≥ 2.

Hence 1 = |qr− ps| = |β +α|. One can verify that β +α = −1 with β < 0, is the only 
possibility given the bounds on q. Thus, q = αqN+k − (α + 1)qN+k−1 = 2sα − qN+k−1. 
Hence there has to be a unique value of α that satisfies the bounds on q. Note that the 
case α = 2k + 1 corresponds to q′N+k which satisfies the given bounds by statement (2). 
Thus, q = q′N+k so that p/q is an F1,2-convergent of x.

The converse follows from (3). �
7. Best approximations and convergents

A rational number p/q is called a best approximation of x ∈ R if for every rational 
p′/q′ different from p/q with 0 < q′ ≤ q, we have |qx − p| < |q′x − p′|. A rational number 
p/q ∈ X is called a best approximation of x by an element of X , if for every p′/q′ ∈ X
different from p/q with 0 < q′ ≤ q, we have |qx − p| < |q′x − p′|.

Recall when x /∈ Q \ X , there is a unique F1,2-continued fraction of x so that the 
sequence of F1,2-convergents is well defined. Further, when x ∈ X , the sequence of 
convergents is finite. But when x ∈ Q \X , there are two distinct F1,2-continued fractions 
giving two sequences of F1,2-convergents of x. Recall that there are only finitely many 
common F1,2-convergents (of x) corresponding to the two F1,2-continued fractions (see 
Corollary 6.6).

Theorem 7.1. Suppose x ∈ R. Then

(1) If x /∈ Q \ X , every F1,2-convergent of x is a best approximation of x by an element 
of X .

(2) Suppose x ∈ Q \ X . An F1,2-convergent is a best approximation of x by an element 
of X if and only if it is a member of both the sequences of F1,2-convergents of x.

The second statement of this theorem is illustrated in the following example.

Example 2. Recall (refer Example 1 after Theorem 6.5) that the two sequences of 
F1,2-convergents of 2/7 are

{
1
2 ,

1
4 ,

5
18 ,

9
32 ,

13
46 · · ·

}
and

{
1
2 ,

1
4 ,

3
10 ,

7
24 ,

11
38 , · · ·

}
.

The common convergents are 1/2 and 1/4. It is not difficult to see that each of them 
is a best approximation of 2/7 by an element of X . Suppose p/q ∈ X with q > 4. 
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Then |q · 2/7 − p| = 1/7|2q − 7p| ≥ 1/7 = |4 · 2/7 − 1|. Therefore, p/q cannot be a 
best approximation of 2/7 by an element of X . Thus 1/2 and 1/4 are the only best 
approximations of 2/7 by an element of X .

Proof of Theorem 7.1. Suppose x /∈ Q \ X . Let {pk

qk
}Mk=0 be the sequence of F1,2-conver-

gents. Here, M is finite if x ∈ X , else M = ∞. By Theorem 3.1, p0
q0

= b
2 , where 

b = 2�x� + 1. This is clearly a best approximation of x by an element of X .
Let n ≥ 0 be an integer with the restriction that n < M − 1 if M is finite. Assume 

that, for 0 ≤ k ≤ n, pk/qk is a best approximation of x by an element of X . Now we 
show that pn+1/qn+1 is a best approximation of x by an element of X . Note that the 
case of M finite and n = M − 1 is clear as qMx − pM = 0.

For any p/q ∈ X different from pn+1/qn+1 with 0 < q ≤ qn, then |qx −p| > |qnx −pn| ≥
|qn+1x − pn+1|. Next if qn < q ≤ qn+1, we use Theorem 2.5(5) to get

|qn+1x− pn+1| = 2
xn+2qn+1 + εn+2qn

,

|qx− p| = |xn+2(pn+1q − qn+1p) + εn+2(pnq − qnp)|
xn+2qn+1 + εn+2qn

. (7.1)

Now, we will show that numerator in (7.1) is greater than 2. By Lemma 6.9, p =
βpn + αpn+1, q = βqn + αqn+1 for some α, β ∈ Z with |β| ≥ 2. Thus,

|qx− p| = 2|βxn+2 − αεn+2|
xn+2qn+1 + εn+2qn

.

The proof of part (1) will be complete if we show that

|βxn+2 − αεn+2| > 1. (7.2)

Case 1. Suppose β ≥ 2. Since q ≤ qn+1, we have (α− 1)qn+1 ≤ −βqn < 0. Since α ∈ Z, 
we have α ≤ 0. Again, since qn < βqn + αqn+1, we have −α

β−1 < qn
qn+1

. Hence, α > 1 − β

(since qn/qn+1 < 1). Thus we have shown 1 − β < α ≤ 0. Using these bounds and the 
fact that xn+2 > 1 (by Corollary 6.3), inequality (7.2) follows.

Case 2. Suppose β ≤ −2. Since q > 0, α ≥ 1. Since q ≤ qn+1, −β
α−1 ≥ qn+1

qn
so that α ≤ −β

(since qn+1/qn > 1). Since p = βpn+αpn+1 is odd, α �= −β and hence α ≤ −β−1. Thus, 
we have shown that 1 ≤ α ≤ −β − 1 which implies inequality (7.2) (since xn+2 > 1).

For the proof of part (2), let x ∈ Q \ X so that it has two F1,2-continued fractions. 
Suppose pk/qk appears in both the sequences of F1,2-convergents. Then, by Corollary 6.7, 
we have xk+1 > 1. Hence the result follows from the computation of the first part.

Conversely, suppose pn/qn occurs in only one of the sequences of F1,2-convergents. 
Then |qnx − pn| = |qN−1x − pN−1| = |qNx − pN | (by Proposition 6.10). If N ≥ 1, this 
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immediately gives that pn/qn is not a best approximation (since 0 < qN−1 < qn). In the 
case N = 0, we can use the same reasoning to get that pn/qn is not a best approximation 
when 2 = qN < qn. The remaining case q0 = 2 (N = 0, qN = qn) is completed by noting 
that x is an integer and |2x − (2x − 1)| = |2x − (2x + 1)| which implies that neither of 
these are best approximations. �
Lemma 7.2. Suppose x ∈ X . Suppose {pi

qi
}Mi=0 is the sequence of F1,2-convergents of x. 

Let p/q ∈ X be a best approximation of x by an element of X . Then q ≤ qM .

Proof. Suppose q > qM . Observe that x = pM

qM
. Hence |qx − p| ≥ |qMx − pM | = 0 so that 

p/q is not a best approximation of x by an element of X . �
Lemma 7.3. Suppose x ∈ Q \X and N is as in Proposition 6.10. If p/q is a best approx-
imation of x by an element of X , then N ≥ 1 and q ≤ qN−1.

Proof. Suppose p/q ∈ X and set x = r/s so that s is odd. By Proposition 6.10(3), 
|qN−1x − pN−1| ≤ |qr−ps|

s = |qx − p| (since |qr− ps| ≥ 1). Thus, if N ≥ 1 and q > qN−1, 
p/q is not a best approximation of x by an element of X .

If N = 0, we replace N − 1 by N in the above steps to conclude that q ≤ q0 = 2. 
However, in this case, x is an integer and 1 = |2x − (2x − 1)| = |2x − (2x + 1)| is the 
smallest possible value for |qx − p|, and hence p/q cannot be a best approximation by 
an element of X . �
Theorem 7.4. Every best approximation of a real number x by an element of X is an 
F1,2-convergent of x.

Proof. Let {pi

qi
}i≥0 be a sequence of F1,2-convergents of x. Let p/q ∈ X be a best 

approximation of x by an element of X . Then for some n ≥ 0, qn ≤ q < qn+1. If x ∈ X , 
by Lemma 7.2, q ≤ qM with x = pM/qM . Observe that if q = qM then p = pM is the 
only possibility and the theorem holds. Hence we can assume that q < qM and hence 
n < M and xn+1 > 1. For x /∈ X , we note that xi �= 1 ∀i ≥ 1 unless x ∈ Q \ X and if 
x ∈ Q \X , then by Lemma 7.3, N ≥ 1 and n < N so that xn+1 �= 1 (Proposition 6.2(2)). 
Thus, we can assume that xn+1 > 1 in all cases.

The proof of the theorem is by contradiction. Suppose that p/q is not an F1,2-conver-
gent of x. By using Lemma 6.9, we obtain q = βqn−1+αqn, p = βpn−1+αpn for α, β ∈ Z

with |β| ≥ 2 and

|qx− p| = 2|βxn+1 − εn+1α|
xn+1qn + εn+1qn−1

.

We will show that the numerator is strictly bigger than 2 which contradicts that pq is a 
best approximation of x by an element of X .
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Case 1. Suppose β ≥ 2. Then qn ≤ q = βqn−1 +αqn < qn+1 = εn+1qn−1 +an+1qn. Hence 
1 − β < α ≤ an+1 − 1 (since qn−1 > 0). Using an+1 = 2�xn+1+1

2 � ≤ xn+1 + 1, we have 
1 − β < α ≤ xn+1. These bounds on α imply βxn+1 − εn+1α > 1.

Case 2. Suppose β ≤ −2. Then 0 < q = βqn−1 + αqn < εn+1qn−1 + an+1qn. Hence 
1 ≤ α ≤ εn+1 − β + an+1 − 1 (since qn−1

qn
< 1). Since p = βpn−1 + αpn is odd, we have 

α �= εn+1 − β + an+1 − 1 so that α ≤ εn+1 − β + an+1 − 2. These bounds on α imply 
βxn+1 − εn+1α < −1. �
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