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a b s t r a c t

Transfer learning enables solving a specific task having limited data by using the pre-trained deep
networks trained on large-scale datasets. Typically, while transferring the learned knowledge from
source task to the target task, the last few layers are fine-tuned (re-trained) over the target dataset.
However, these layers are originally designed for the source task that might not be suitable for the
target task. In this paper, we introduce a mechanism for automatically tuning the Convolutional
Neural Networks (CNN) for improved transfer learning. The pre-trained CNN layers are tuned with
the knowledge from target data using Bayesian Optimization. First, we train the final layer of the base
CNN model by replacing the number of neurons in the softmax layer with the number of classes
involved in the target task. Next, the CNN is tuned automatically by observing the classification
performance on the validation data (greedy criteria). To evaluate the performance of the proposed
method, experiments are conducted on three benchmark datasets, e.g., CalTech-101, CalTech-256, and
Stanford Dogs. The classification results obtained through the proposed AutoTune method outperforms
the standard baseline transfer learning methods over the three datasets by achieving 95.92%, 86.54%,
and 84.67% accuracy over CalTech-101, CalTech-256, and Stanford Dogs, respectively. The experimental
results obtained in this study depict that tuning of the pre-trained CNN layers with the knowledge
from the target dataset confesses better transfer learning ability. The source codes are available at
https://github.com/JekyllAndHyde8999/AutoTune_CNN_TransferLearning.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The ability of Convolutional Neural Networks (CNN) to per-
form feature extraction and decision making in one-shot creates
enormous demand in several application areas, such as object
recognition (Krizhevsky, Sutskever, & Hinton, 2012), language
translation (Zhang, Zong, et al., 2015), and many more. However,
the performance of the deep learning models is sensitive w.r.t. the
small changes made in both network hyperparameters settings,
such as the number of layers, filter dimension of a convolution
layer, etc. and it is also sensitive to the other training parameters,
such as learning rate, activation function, and so on. Most of the
CNNs available in the literature are carefully designed in terms of
these hyperparameters by the domain experts (He, Zhang, Ren, &
Sun, 2016; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
Szegedy et al., 2015).

In recent years, researchers have made substantial efforts
to automatically learning the structure of a CNN for a specific
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task (Liu et al., 2018; Zoph, Vasudevan, Shlens, & Le, 2018), known
as Neural Architecture Search (NAS). Although these methods
out-perform most of the hand-engineered architectures, the sea-
rch process requires huge computational resources and time to
train the proxy CNNs that are explored during the architecture
search process (Zoph & Le, 2016). Particularly while working on
small datasets, the process of NAS becomes a challenge. Transfer
learning is a popularly adopted technique to reduce the demand
for both large computational resources and training data by
providing promising performance over small datasets.

Many machine learning algorithms assume that the training
(source) data and future data (target) have the similar distribu-
tion. In this direction, many Metric-learning algorithms (Dong,
Du, Zhang, & Zhang, 2017; Hu, Lu, & Tan, 2015) are proposed in
the literature. To mention a few, Deep Transfer Metric Learning
(DTML) method introduced by Hu et al. (2015), in which a dis-
criminative distance network is trained for cross-dataset visual
recognition by maximizing the inter-class variations and mini-
mizing the intra-class similarity. Similarly, Dong et al. (2017) pro-
posed an Ensemble Discriminative Local Metric Learning (EDLML)
which aims at learning a sub-space to keep all the intra-class
samples as close as possible, while the samples belong to different
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Fig. 1. Overview of the proposed method. (a) Typically, the CNN models used for transferring the knowledge are initially trained over a large-scale image dataset.

(b) Conventionally, while transferring the learned knowledge from the source task to the target task, the last one or a few layers of the pre-trained CNN are fine-tuned

over the target dataset. (c) The proposed AutoTune method tunes the optimal number of layers automatically using Bayesian Optimization (Frazier, 2018). Note that

the lock and unlock symbols are used to represent the frozen and fine-tuned layers, respectively. Finally, the tuned CNN layers can be re-trained over the target

dataset for improved transfer learning. Different colors represent different CNN layers.

classes are well separated. Shi, Du, and Zhang (2015) presented
a semi-supervised domain adaptation approach which finds new
representations of the images belong to the source domain using
multiple linear transformations.

Typically, while transforming the learned knowledge from
source task to the target task, the classification layer of the pre-
trained CNN is dropped, after which a new softmax layer is
stacked that is trained over the target dataset during transfer
learning. The number of layers to be fine-tuned can be decided
majorly based on the size of the target dataset and the similarity
between the source and target datasets (Karpathy & Johnson,
2017). However, the pre-trained CNN model is designed for the
source dataset, which may not perform well over the target
dataset.

In this paper, we attempt to automatically tune the pre-trained
CNN to make it suitable for the target task/dataset. To achieve
this objective, initially, we drop the softmax layer of the pre-
trained CNN by replacing it with a new softmax layer having
the neurons equal to the number of classes in the target dataset.
Next, we automatically tune the layers of CNN using Bayesian
Optimization (Frazier, 2018). It is a well-known fact that the
initial layers of CNN represent primitive features such as edges
and blobs which are generic to many tasks. On the other hand, the
final layers of CNN represent the features that are very specific to
the learning task (Zeiler & Fergus, 2014). Based on the above idea,
in our work, the layers of the CNN are tuned from right to left
(i.e., from final layers to initial layers) by observing the network
performance on the validation data. The results obtained through
our experiments indicate that tuning the optimum number of
layers with respect to the target task leads to better image clas-
sification performance in the context of transfer learning. Fig. 1
shows an overview of the proposed idea of improving the transfer
learning process. Next, we provide a survey of literature in the
specific research area focused in this study.

2. Related works

The hierarchical feature extraction ability of deep neural net-
works enables the adoption of a deep network. The pre-trained

network over a large-scale dataset (source task) can be utilized
to solve the specific task/ problem (target task) through trans-
ferring the knowledge learned from the source task. Transfer
learning has been widely adopted in domains where collect-
ing the annotated examples is expensive (labor-intensive) and
time-consuming task, such as biomedical (Raghu, Sriraam, Temel,
Rao, & Kubben, 2020; Shin et al., 2016), agriculture (Kamilaris
& Prenafeta-Boldú, 2018), signature generation (Nahmias, Cohen,
Nissim, & Elovici, 2020) and many more. Khan, Islam, Jan, Din, and
Rodrigues (2019) proposed an average-pooling based classifier to
detect and classify breast cancer images. Han, Liu, and Fan (2018)
introduced a two-step method to improve the generalization abil-
ity of CNN over the target dataset using web data augmentation.
Yosinski, Clune, Bengio, and Lipson (2014) conducted a study to
measure the generality and specificity of different neurons in-
volved in a deep neural network. In other words, they introduced
a mechanism to quantify the transfer-ability of features learned
by each layer of a CNN. Wang, Du, and Guo (2019a) introduced
an approach to induce a common representation feature space
for both source and target domains using a CNN model. A semi-
supervised domain adaptation approach proposed by Shi et al.
(2015), which finds new representations of the images belong to
different classes from the source domain.

Automatically searching for better performing CNN archi-
tectures for a given task (also called NAS) has gained inter-
est among the researchers in recent years (Elsken, Metzen, &
Hutter, 2019). Before the emergence of NAS, hyperparameter
optimization has achieved great success in tuning the machine
learning algorithms (Bergstra, Bardenet, Bengio, & Kégl, 2011;
Snoek, Larochelle, & Adams, 2012). NAS-based CNNs available
in the literature consume an enormous amount of search time
and GPU hours to find better performing CNNs. For instance,
Reinforcement Learning (RL) based NAS method proposed by
Zoph and Le (2016) trained 12,800 proxy CNN models for 28 days
using 800 GPUs. Moreover, NASNet (Zoph et al., 2018) utilized
500 GPUs for 4 days to train 20,000 proxy CNN models that
are sampled during the architecture search. Very recently, Jiang
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Table 1

The search space considered for the hyperparameters involved in the convolutional neural network

layers such as Convolution, max/average-pooling, and dense layers.

S.No. Type of the layer Parameters involved Parameter values

1 Convolution Receptive filter size

Stride

#receptive filters

{1, 2, 3, 5}

Always 1

{64, 128, 256, 512}

2 Max-pooling Receptive filter size

Stride

{2, 3}

Always 1

3 Average-pooling Receptive filter size

Stride

{2, 3}

Always 1

3 Fully Connected or

Dense

FC layers

# neurons

{1, 2, 3}

{64, 128, 256, 512, 1024}

4 Dropout Dropout factor [0, 1] with offset 0.1

et al. (2020) proposed a multi-objective NAS that is intended to
minimize both classification error and network parameters.

Transfer learning allows the applications to utilize the advan-
tage of deep neural networks by reusing the learned knowledge
from the source task. Fine-tuning the pre-trained CNN over the
target dataset may produce satisfactory results. However, the pre-
trained CNN is designed for the source task which may not be
suitable for the target task, especially the deeper layers. There-
fore, tuning the optimal number of CNN layers and suitable hy-
perparameters with the knowledge from the target dataset may
produce better results compared to the traditional fine-tuning
approaches over the target dataset.

After transferring the learned knowledge from a source
task, the capacity of the network increases for the target task
(Molchanov, Tyree, Karras, Aila, & Kautz, 2016), if the target
dataset has a very less number of training examples. Molchanov
et al. (2016) proposed a mechanism to progressively prune the
least important feature maps to reduce the model’s capacity
while fine-tuning over the target task. Various studies have re-
ported that the CNN representations learned from a large-scale
image dataset in a source domain, can be successfully transferred
to a target domain Azizpour, Razavian, Sullivan, Maki, and Carls-
son (2015), Yosinski et al. (2014). However, the target domain
has limited data compared to the source domain in practice.
In such scenarios, transfer learning suffers from overfitting. To
address this problem, Liu, Wang, and Qiao (2017) introduced a
framework called Hybrid-TransferNet to improve the network’s
generalization ability while transferring the knowledge from the
source domain to the target domain by removing the redundant
features. Similarly, Ayinde, Inanc, and Zurada (2019) proposed a
method to reduce the inference time of deep neural networks by
pruning the redundant feature maps (filters) based on the relative
cosine similarities in the feature space.

Recently, Basha, Vinakota, Dubey, Pulabaigari, and Mukherjee
(2020) proposed a framework called AutoFCL for automatically
tuning the Fully Connected (FC) layers of a pre-trained CNN
with the knowledge from the target dataset while transferring
the knowledge from the source task. However, in this work, the
search space is limited to fully connected layers. To extend this
work, we design a mechanism for automatically tuning the CNN
w.r.t. the target dataset for improved transfer learning.

The contributions of this research can be summarized as fol-
lows:

• This paper introduces a framework called AutoTune which
finds the number of layers to be fine-tuned automatically for
a target dataset for improved transfer learning.

• Bayesian Optimization technique is applied to learn the
pre-trained CNN layers with the knowledge of the target
dataset.

• Several experiments are conducted over CalTech-101,
CalTech-256, and Stanford Dogs datasets to justify the ef-
ficacy of the proposed model using the popular pre-trained

CNNs, namely, VGG-16 (Simonyan & Zisserman, 2014),
ResNet-50 (He et al., 2016), and DenseNet-121 (Huang, Liu,
Van Der Maaten, & Weinberger, 2017). The obtained re-
sults are compared with state-of-the-art that includes both
transfer learning and non-transfer learning-based methods.

Next, we discuss the proposed method in detail.

3. Methods

The task of automatically tuning a pre-trained CNN w.r.t. the
target dataset can be formulated as a black-box optimization
problem where we do not have direct access to the objective
function. In this paper, tuning the CNN layers with the knowledge
of the target dataset for improved transfer learning is achieved
using Bayesian Optimization (Frazier, 2018). Let F be the objective
function, which is of the form,

F : Rd −→ R. (1)

The objective of the Bayesian optimization can be represented
mathematically as follows,

x∗ = argmax
x∈S

F (x), (2)

where x ∈ R
d is the input, the hyperparameter search space is

denoted by S which is shown in Table 1. Evaluating the value
of the objective function F at any point in the search space is
expensive. It can be obtained by fine-tuning (re-training) the
proxy CNN layers (explored during the architecture search) over
the target dataset.

The optimal configuration of the hyperparameters involved in
the tuned layers (learned using Bayesian optimization) is rep-
resented using x∗. Hence, the pre-trained CNN having the last
few layers with the optimal structure (x∗) is responsible for
obtaining the best performance on the validation (held-out) data
ValidationData. The proposed method for automatically tuning the
CNN with the knowledge from the target dataset yields improved
performance while transferring the learned information from the
source dataset to the target dataset. The proposed idea is outlined
in Algorithm 1.

3.1. Proposed AutoTune method

The objective of the proposed AutoTune method is to find the
optimal structure of pre-trained CNN for improved transfer learn-
ing. To achieve this objective, Algorithm 1 takes BaseCNN (B) i.e., a
pre-trained CNN, hyperparameter search space (HParamspace),
TrainingData, ValidationData, and maximum number of Epochs (E)
to train each proxy CNN as input. It tunes the pre-trained CNN
layers w.r.t. the target dataset using Bayesian optimization (Bayes
Opt) (Frazier, 2018).
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Algorithm 1 AutoTUNE: Automatically tuning the CNN for improved transfer learning using Bayesian optimization

Inputs: B (BaseCNN ), HParam_space (hyperparameters search space), TrainingData, ValidationData, Epochs (num of epochs to train each
proxy CNN).
Output: A CNN with target-dependent network architecture.

1: procedure AutoTune

2: Assume Gaussian Process (GP) prior on the objective function F

3: Find and observe the objective F at initial m0 points n = m0

4: while k ∈ n + 1, ..,N do ▷ explore the hyperparameter search space
5: Update the posterior distribution on F using the prior
6: Choose next sample xk that maximizes the acquisition function value
7: Observe yk = F (xk)

8: return xk ▷ return a point with best FC layer structure

Bayesian optimization has been used widely to tune the hy-

perparameters involved in machine learning algorithms such as

deep neural networks (Snoek et al., 2012). Bayesian optimization

is a type of machine learning based optimization problem in

which the objective is a black-box function. Here, we provide

brief details about Bayesian optimization, for complete details we

recommend the reader to refer the original paper (Frazier, 2018).

Bayesian optimization includes two key components, including

a surrogate model and an acquisition function. The surrogate

model is a Bayesian statistical model that builds an approxi-

mation for the objective function using Gaussian Process (GP)

Regression (Rasmussen, 2003). The acquisition function utilizes

this Bayesian statistical model to make the search process pro-

ductive by proposing the next point to explore from the search

space.

As outlined in Algorithm 1, initially the objective function F

is observed at m0 points which are chosen uniformly random

(in our experimental settings m0 is considered as 20). Among

the m0 function evaluations, we pick the optimal point x+, the
hyperparameter configuration corresponding to the maximum

validation accuracy (F (x+)) observed while fine-tuning the CNN

over the target dataset. Next, we need to conduct an evaluation

at new point xnew , which is F (xnew). At this moment, the optimal

objective value is either F (x+) if F (x+) ≥ F (xnew) or F (xnew)

if F (x+) ≤ F (xnew). The improvement or gain in the value of

objective after observing at this point is F (xnew) − F (x+) which

is either positive when F (xnew) > F (x+), or zero when F (xnew) ≤
F (x+). We can represent the value of improvement as [F (xnew) −
F (x+)]+, where []+ denotes the positive quantity of improvement.

At iteration k = m0+1, we choose xnew at which the improvement

is high. However, the value of objective F (xnew) is unknown before

evaluation (which is a typically expensive task). Alternatively, we

can compute the expected value of the improvement and choose

xnew for which the improvement is maximized. The Expected

Improvement (EI) is defined as follows:

EIm0
(x) := Em0

[[F (xnew) − F (x+)]+] (3)

where Em0
is the expectation computed under posterior distribu-

tion given the evaluations of objective F at the points x1, x2, . . . ,

xm0
. The posterior probability of F (xnew) given F (x1:m0

) is normally

distributed with mean µm0
(xnew) and variance σ

2
m0

(xnew), which

can be formally represented as,

F (xnew)|F (x1:m0
) ∼ Normal(µm0

(xnew), σ
2
m0

(xnew)) (4)

where µm0
(xnew) and σ

2
m0

(xnew) are analytically computed as,

µm0
(xnew) =

∑

0

(xnew, x1:m0
)
∑

0

(x1:m0
, x1:m0

)−1

× (F (x1:m0
) − µ0(x1:m0

)) + µ0(xnew) (5)

σ
2
m0

(xnew) =
∑

0

(xnew, xnew) −
∑

0

(xnew, x1:m0
)

×
∑

0

(x1:m0
, x1:m0

)−1
∑

0

(x1:m0
, xnew) (6)

The Expected Improvement (EI) acquisition function lets the
Algorithm 1 to evaluate at the point which results in a maximum
improvement in the expectation.

xk+1 = argmax EIk(x) (7)

We update the posterior distribution upon observing the objec-
tive F at each point using Eq. (4). Throughout our experiments,
the evaluations (N) of the objective F are performed for 50 (in-
cluding 20 initial evaluations which are sampled in a uniform
random manner) in the case of Bayesian Optimization. On the
other hand, 100 evaluations are performed in case of random
search.

4. Architecture tuning search space

Here, we provide a detailed discussion on the used search
space for the hyperparameters involved in the different layers
of a deep neural network, such as convolution, max-pooling,
average pooling, and dense layers. In our experimental settings,
we consider the plain as well as skip connection based CNNs.
More concretely, we consider the popular CNNs such as VGG-16
(Simonyan & Zisserman, 2014), ResNet-50 (He et al., 2016) and
DenseNet-121 (Huang et al., 2017). These networks are originally
pre-trained over ImageNet (Deng et al., 2009) dataset for auto-
matically tuning w.r.t. the target dataset for improved transfer
learning.

Basha et al. (2020) observed that learning the structure of Fully
Connected (FC) layers with the knowledge from the target dataset
and fine-tuning these learned FC layers over the target dataset
leads to better performance compared to just fine-tuning with
the original CNN. To extend this work, in this article, we propose
a framework for automatically tuning the CNN (beyond FC layers)
for improved transfer learning. From the literature, we found that
a shallow/deeper CNN, which has 3 FC layers (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014) including the output layer
achieves comparable performance. Hence, we consider, the search
space for the "number of FC layers" hyperparameter in the range
{1, 2, 3} including the output FC layer. Another key hyperparam-
eter involved in FC layers is the number of neurons, for which
our search space is {64, 128, 256, 512, 1024}. Dropout (Srivas-
tava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) is
a popular regularization method adopted to generalize the net-
work performance over unseen data. We employed dropout after
each dense layer of proxy CNNs explored during the architecture
search. The dropout rate is tuned within the range [0, 1] with
an offset 0.1, i.e., the optimal dropout factor is learned from the
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Fig. 2. The pictorial representation of different types of CNNs. Each rectangle box represents a layer in CNN such as convolution, max-pooling, and dense layers.

Different colors are used to represent different layers. (a) Illustration of chain-structured CNNs. (b) The more complex type of architecture involving skip connections,

where a layer receives input feature-map from one or more layers.

values {0.0, 0.1, . . . , 0.9, 1.0}. The hyperparameters involved in
other layers such as Convolution, Pooling are shown in Table 1.
Our search space involves 6 operations in both convolution and
pooling layers which is less as compared to 8 operations used
in Liu et al. (2018) and 13 operations used in Zoph et al. (2018).

Throughout our experiments, we have not modified the con-
nectivity of the CNN models that are utilized to carry out the
experiments. We utilize two more operators, including (1) 1 × 1
convolution and (2) upsample operations (similar to un-pooling)
to tackle the tensor dimension mismatch in depth and spatial
dimensions, respectively.

5. Experimental settings

We first demonstrate the details about the hyperparameters
such as learning rate, optimizer, etc., employed while training the
CNNs in Section 5.1. The pre-trained deep neural networks used
to tune the CNN w.r.t. the target dataset are discussed in Sec-
tion 5.2, and the datasets utilized for conducting the experiments
are discussed in Section 5.3.

5.1. Training details

We call the CNNs explored during the search process as proxy
CNNs. To train the proxy CNNs, the parameters or weights in-
volved in the layers (which are tuned during the search process)
are initialized with ‘‘He-normal’’ initialization (He, Zhang, Ren, &
Sun, 2015). The CNNs are trained using Adagrad optimizer (Duchi,
Hazan, & Singer, 2011) with an initial value of the learning rate
as 0.01. The learning rate is decreased by a factor of

√
0.1 if

there is no reduction in the validation loss. Rectified Linear Unit
(ReLU) is employed as the activation function throughout the
experiments. Since the architecture search is a time-consuming
task, to alleviate this situation each proxy CNN is trained for
50 epochs. To reduce the over-fitting, data augmentation such
as shearing, zooming the images, horizontal, and vertical flip
image transformations are employed. Batch Normalization (Ioffe
& Szegedy, 2015) is used after every dense layer to accelerate the
training process and to increase the generalization ability.

5.2. Deep CNNs used for AutoTune

From the literature of deep neural networks, we can broadly

classify the CNNs into two types based on the network connec-

tivity, i.e., (i) Chain-structured or Plain CNNs (Elsken et al., 2019)

and (ii) CNNs with skip connections.

Plain CNNs: A plain CNN consists of collection of n layers

stacked sequentially. The kth layer Lk receives the input from

layer Lk−1 and its output feature map is supplied as input to

the layer Lk+1. For instance, the hand-designed CNNs proposed

in the initial years (2012–2014) such as LeNet (LeCun, Bottou,

Bengio, Haffner, et al., 1998), AlexNet (Krizhevsky et al., 2012),

ZFNet (Zeiler & Fergus, 2014), VGGNet (Simonyan & Zisserman,

2014), and NAS based models (Baker, Gupta, Naik, & Raskar, 2016;

Baker, Gupta, Raskar, & Naik, 2017) have chain-structured con-

nections. A typical structure of plain CNNs is shown in Fig. 2(a). In

this article, we utilize the VGG-16 (Simonyan & Zisserman, 2014),

a plain structured deep CNN for conducting the experiments.

CNNs with skip connection: This class of CNNs involves skip-

connections which allow a layer to receive input feature maps

from more than one layer. Let us consider, a CNN is having n lay-

ers which are represented as {L1, L2, . . . , Lk, . . . , Ln−1, Ln}, where

the layers L1, Ln are input, output layers, respectively. In the CNNs

involving skip connections, the layer Lk receives input feature-

maps from both layers Lk − 1 and Lk − 2 as in ResNet (He et al.,

2016). Similarly, in DenseNet proposed by Huang et al. (2017),

layer Lk receives the input feature-maps from all of its previous

layers L1, L2, . . . .Lk−1. In 2015, Szegedy et al. (2015) developed a

CNN called GoogLeNet by investing more time and human efforts.

Recently proposed NAS based CNNs such as Liu, Yang, and Li

(2015) and Zoph et al. (2018) discover more complex CNNs during

their search process. Fig. 2(b) demonstrates the abstract view of

CNNs involving skip connections. In this research, we use ResNet-

50 (He et al., 2016) and DenseNet-121 (Huang et al., 2017) for

conducting the experiments of automatically tuning CNNs for

improved transfer learning.
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Table 2

Comparing the classification performance obtained using the proposed method which is developed using both

Bayesian Optimization (BO) and Random Search (RS) with state-of-the-art methods over CalTech-101, CalTech-256,

and Stanford Dogs datasets. We compare our results with both transfer learning and non-transfer learning based

methods. The best and second-best classification accuracies on each dataset are highlighted in bold–italic and bold,

respectively. Note that the results of existing methods are taken from the respective papers.

Dataset Method Accuracy Transfer learning

CalTech-101

Lee, Grosse, Ranganath, and Ng (2009) 65.4 ✘

Zeiler and Fergus (2014) 86.5 ✓

Cubuk, Zoph, Mane, Vasudevan, and Le (2019) 86.9 ✓

Sawada et al. (2019) 91.8 ✓

Basha et al. (2020) 94.38 ± 0.015 ✓

AutoTune (BO) + VGG-16 95.83 ± 0.004 ✓

AutoTune (RS) + VGG-16 93.54 ± 0.02 ✓

AutoTune (BO) + ResNet-50 93.57 ± 0.034 ✓

AutoTune (RS) + ResNet-50 91.52 ± 0.004 ✓

AutoTune (BO) + DenseNet-121 95.92 ± 0.025 ✓

AutoTune (RS) + DenseNet-121 93.71 ± 0.031 ✓

CalTech-256

Zeiler and Fergus (2014) 74.2 ✓

Wang, Zhang, Li, Zhang, and Lin (2016) 74.2 ✘

Schwartz et al. (2018) 83.6 ✘

Chu, Madhavan, Beijbom, Hoffman, and Darrell (2016) 71.4 ✓

Cai, Zhang, Zuo, and Feng (2016) 83.3 ✓

Zheng, Zhao, Wang, Wang, and Tian (2016) 83.27 ✓

Mahmood, Bennamoun, An, and Sohel (2017) 82.1 ✓

Wang et al. (2019b) 81.32 ✓

AutoTune (BO) + VGG-16 82.47 ± 0.003 ✓

AutoTune (RS) + VGG-16 81.83 ± 0.021 ✓

AutoTune (BO) + ResNet-50 84.31 ± 0.005 ✓

AutoTune (RS) + ResNet-50 83.74 ± 0.001 ✓

AutoTune (BO) + DenseNet-121 86.54 ± 0.023 ✓

AutoTune (RS) + DenseNet-121 85.96 ± 0.045 ✓

Stanford Dogs

Murabito et al. (2018) 70.5 ✘

Lee, Sattigeri, and Wornell (2019) 55.2 ✓

Li, Grandvalet, and Davoine (2020) 77.1 ✓

Dubey et al. (2018) 83.75 ✓

Shen, Wang, Song, Sun, and Song (2019) 65.5 ✓

AutoTune (BO) + VGG-16 81.23 ± 0.002 ✓

AutoTune (RS) + VGG-16 78.21 ± 0.005 ✓

AutoTune (BO) + ResNet-50 83.17 ± 0.022 ✓

AutoTune (RS) + ResNet-50 82.4 ± 0.06 ✓

AutoTune (BO) + DenseNet-121 84.67 ± 0.014 ✓

AutoTune (RS) + DenseNet-121 83.19 ± 0.004 ✓

5.3. Datasets

We use three publicly available standard datasets, including
CalTech-101 (Fei-Fei, Fergus, & Perona, 2004), CalTech-256 (Grif-
fin, Holub, & Perona, 2007), and Stanford Dogs (Khosla, Jayade-
vaprakash, Yao, & Li, 2011), to perform the experiments.

5.3.1. CalTech-101

The CalTech-101 dataset is proposed by Fei-Fei et al. (2004).
It contains images from 101 classes. This dataset has 9144 im-
ages, among which 7315 images are utilized for training and the
remaining 1839 images are used for validating the classification
performance of the CNN models. The dimension of the images
is adjusted to 224 × 224 × 3 to fit the images as per the input
needed to the deep neural networks. A few samples of images are
depicted in Fig. 3(a).

5.3.2. CalTech-256

The CalTech-256 (Griffin et al., 2007) dataset is an improve-
ment made over CalTech-101 (Fei-Fei et al., 2004) dataset in
many aspects such as the total number of images increased from
9144 to 30607, the minimum number of images in each class
increased from 31 to 80, the total number of classes are more
than twice the number of images in CalTech-101 dataset, and
many more. This dataset has 30,607 images, out of which 80%
of the images, i.e., 24,485 are utilized for training the CNNs and
remaining images are used to validate the performance of the
proposed method. The spatial dimension of the images is re-sized

to 224 × 224 × 3 to make the image dimension to fit as input
to the CNNs. Some sample images of the CalTech-256 dataset are
shown in Fig. 3(b).

5.3.3. Stanford Dogs

Stanford Dogs dataset (Khosla et al., 2011) consists of 20,580
images belonging to 120 different dog breeds. This dataset has de-
veloped using the images and annotations from ImageNet (Deng
et al., 2009) dataset for fine-grained image recognition. To tune
and train the CNNs, 12000 of the total images are utilized and
the remaining 8580 images are used to evaluate the performance
of the models. The objects in the images are extracted using the
bounding boxes information provided with the dataset. A small
set of images from the Stanford Dogs dataset are depicted in
Fig. 3(c).

6. Results and discussion

To demonstrate the improved results obtained using the pro-
posed method, this section provides a detailed discussion about
the classification performances obtained using the proposed Au-
toTune method. To find better-performing CNNs, experiments
are conducted on three benchmark datasets, including CalTech-
101, CalTech-256, and Stanford Dogs. To find the target-specific
CNN layers for improved transfer learning, three popular CNNs,
including VGG-16 (Simonyan & Zisserman, 2014), ResNet-50 (He
et al., 2016), and DenseNet-121 (Huang et al., 2017) are utilized. It
is a standard practice in NAS based works (Liu et al., 2018; White,
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Fig. 3. A set of random examples from (a) CalTech-101 (Fei-Fei et al., 2004), (b) CalTech-256 (Griffin et al., 2007), and (c) Stanford Dogs datasets (Khosla et al.,

2011).

Table 3

The best configuration of CNN layers learned for better transfer learning using Bayesian optimization. The base CNN model’s layers are tuned w.r.t. the target datasets

such as CalTech-101, CalTech-256, and Stanford Dogs. Note that the listed Fully connected (FC) layer’s configuration does not include the output FC layer as it always

has the number of neurons same as the number of classes.

CNN Dataset FC layer Convolution layer Max-pooling layer Validation

accuracy

#layers #neurons Dropout

factor

#layers filter

size

# filters #layers filter

size

VGG-16

CalTech-101 1 1024 0.7 – – – 1 2 × 2 94.82

CalTech-256 1 1024 0.6 – – – 1 3 × 3 80.16

Stanford Dogs 0 – – – – – – – 80.02

ResNet-50

CalTech-101 1 256 0.2 2 [3 × 3, 3 × 3] [512, 512] – – 92.01

CalTech-256 1 1024 0.6 1 3 × 3 512 – – 82.96

Stanford Dogs 1 256 0.4 – – – – – 81.63

DenseNet-121

CalTech-101 1 1024 0.3 2 [5 × 5, 2 × 2] [512, 128] – – 95.21

CalTech-256 1 1024 0.1 2 [2 × 2, 2 × 2] [512, 256] – – 85.44

Stanford Dogs 1 512 0.5 – – – – – 83.26

Table 4

The optimal structure of CNN layers found for improved transfer learning using random search. The CNN’s layers are tuned w.r.t. the target datasets, such as

CalTech-101, CalTech-256, and Stanford Dogs. The optimal configuration of the FC layers does not include the output FC layer.

CNN Dataset FC layer Convolution layer Max-pooling layer Validation

accuracy

#layers #neurons Dropout

factor

#layers filter

size

# filters #layers filter

size

VGG-16

CalTech-101 1 512 0.6 – – – – – 92.94

CalTech-256 1 1024 0.3 – – – 1 3 × 3 79.99

Stanford Dogs 2 [1024,

512]

[0.3, 0.5] – – – – – 77.16

ResNet-50

CalTech-101 1 512 0.0 2 [2 × 2, 3 × 3] [512, 256] – – 90.29

CalTech-256 1 1024 0.1 – – – – – 82.84

Stanford Dogs 1 1024 0.5 – – – – – 81.29

DenseNet-121

CalTech-101 1 1024 0.6 1 2 × 2 512 – – 92.55

CalTech-256 1 1024 0.2 1 3 × 3 256 – – 85.16

Stanford Dogs 1 512 0.2 – – – – – 82.7

Neiswanger, & Savani, 2019; Zoph & Le, 2016) to compare with

Random Search (RS). Thus, we also compare the results obtained

using the proposed method with the random search approach.

6.1. Classification results over CalTech-101

The proposed AutoTune method learns the suitable structure

of CNN layers for improved transfer learning using Algorithm 1.

Table 3 lists the optimal configuration of the hyperparameters

involved in CNN layers that are learned using Bayesian Optimiza-

tion. For instance, fine-tuning the ResNet-50 (He et al., 2016)

(which is pre-trained on ImageNet) over the CalTech-101 dataset

with the following structure of CNN layers allows improved trans-

fer learning ability by achieving 92.01% validation accuracy under

our experimental settings:

• An additional Fully Connected (FC) layer with 256 neurons
and having a dropout rate of 0.2 along with the output FC
layer.

• The last two convolution layers having 512 filters of dimen-
sion 3 × 3 in each layer.

The proposed AutoTune finds a better configuration of hyper-
parameters compared to random search. It is evident from the
results portrayed in Table 4. After learning the suitable structure
of CNN layers, we fine-tune the learned CNN layers using Adagrad
optimizer (Duchi et al., 2011) for 200 epochs. Similar to the set-
ting of training proxy CNNs, we consider the learning rate as 0.01
and decreased its value with a rate of

√
0.1 for every 50 epochs.

Fine-tuning the base CNN models with the optimal structure of
CNN layers which are tuned using Bayesian optimization produce
state-of-the-art results while transferring the learned knowledge
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Fig. 4. Illustrating the sensitivity of the FC layer’s hyperparameters like as the number of FC layers and the number of neurons in FC layers on the performance of

the deep neural network. The value of a cell (i,j) represents the validation accuracy obtained by fine-tuning (re-training) the FC layers having the mentioned number

of neurons corresponding to row i (FC2) and column j (FC1). (a), (b), and (c) present the FC layer’s configuration of VGG-16 and the validation accuracy obtained

over CalTech-101, CalTech-256, and Stanford Dogs datasets, respectively.

Fig. 5. Demonstration of classification performance as a function of the number

of neurons in FC layers. The comparison between the training and validation

accuracy obtained by re-training the FC layers of VGG-16 with the specified

number of neurons over the CalTech-101 dataset.

from source task to the target task. From Table 2, we can observe

that the tuning of last few layers of DenseNet (Huang et al.,

2017) and VGG-16 (Simonyan & Zisserman, 2014) using proposed

AutoTune method secures the best (95.92%) and the second-best

(95.83%) results over the CalTech-101 dataset.

6.2. Classification results over CalTech-256

We consider CalTech-256 as another dataset to learn the suit-

able structure of CNN layers for improved transfer learning. Ta-

bles 3 and 4 present the optimal structure of CNN layers learned

using Bayesian Optimization and random search, respectively.

From Table 3, we can note that fine-tuning (training) the CNN

with suitable CNN layers over the target dataset enables im-

proved transfer learning ability. For example, fine-tuning the

DenseNet-121 (Huang et al., 2017) network with the below struc-

ture of CNN layers over the CalTech-256 dataset produces the

state-of-the-art results.

• An additional FC layer with 1024 neurons and the dropout

factor as 0.1 along with the output FC layer.

• The last two convolution layers having filter dimension as

2 × 2 with 512, 256 number of filters, respectively.

Fine-tuning the proxy CNN with the above specification for

DenseNet-121 results in 85.44% classification accuracy, which

is state-of-the-art for the CalTech-256 dataset. Furthermore, re-
training the DenseNet-121 with the optimal structure of CNN lay-
ers for 200 epochs yields 86.54% classification accuracy. Table 2
presents a comparison of the results obtained by employing
the proposed AutoTune method with standard baseline results
that include both the transfer learning and non-transfer learn-
ing based methods. We notice from Table 2 that automatically
tuning the CNN over the CalTech-256 dataset using DenseNet-
121 (Bayesian Optimization) and DenseNet-121 (Random Search)
results in the best (86.54%) and the second-best (85.96%) perfor-
mance as compared to the state-of-the-art results.

6.3. Classification results over Stanford Dogs

To generalize the significance of the proposed method over
different varieties of image classification datasets, we consider
the Stanford Dogs dataset having a high degree of inter-class
similarity. It is evident from Table 2 that the proposed AutoTune
method achieves the state-of-the-art result (i.e., 84.67% classifi-
cation accuracy) over the Stanford Dogs dataset. From this result,
we can observe that though the source and target datasets are
either from the same domain or from different domains, tuning
the CNN w.r.t. the target dataset yields improved transfer learning
results using the proposed AutoTune method.

The optimal structure of CNN layers found for Stanford Dogs
dataset using Bayesian Optimization and random search methods
are shown in Tables 3 and 4, respectively. For instance, fine-
tuning the ResNet-50 w.r.t. the Stanford Dogs dataset with an
additional FC layer having 256 neurons and dropout factor as 0.4
along with the output FC layer offers improved performance over
validation data.

6.4. Comparing the results with traditional transfer learning

To demonstrate the improved transfer learning using the pro-
posed method, we compare the results obtained for CalTech-
101 using the proposed method with conventional fine-tuning
and shown the same in Table 5. From this Table, we can ob-
serve that the proposed method achieves significant gain in the
performance (with a very less number of trainable parameters)
compared to the traditional fine-tuning of CNN layers over the
target dataset. For instance, traditional fine-tuning of the base
VGG-16 model (Simonyan & Zisserman, 2014) achieves 84.21%
validation accuracy for CalTech-101, which requires to train 120
Million parameters involved in top 3 layers. On the other hand,
fine-tuning the VGG-16 model tuned using the proposed Au-
toTune method attains 95.83% validation accuracy by training
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Table 5

The comparison of transfer learning results obtained for CalTech-101 using the conventional fine-tuning and the proposed AutoTune

method which is implemented using Bayesian Optimization (BO) and Random Search (RS).

CNN

architecture

Fine-tuning

type

#Layers

finetuned

#Trainable

parameters

(in Millions)

Validation

accuracy

Total FLOPs (in 108) /

FLOPs corresponding

to the learned layers

(in 108)

VGG-16

AutoTune (BO) 3 88.7 95.83 153.7/0.51

AutoTune (RS) 2 26.2 93.54 153.5/0.12

Conventional 3 120 84.21 154.6/1.2

ResNet-50

AutoTune (BO) 4 4.8 93.57 37.6/0.8

AutoTune (RS) 4 2.4 91.52 37.2/0.38

Conventional 4 4.7 93.55 38.5/2.2

DenseNet-121

AutoTune (BO) 4 1.3 95.92 28.4/0.25

AutoTune (RS) 3 0.6 93.71 28.3/0.1

Conventional 4 0.31 92.94 28.2/0.1

Table 6

Comparing the results obtained for CalTech-256 with the conventional fine-tuning and the proposed AutoTune method which is

implemented using Bayesian Optimization (BO) and Random Search (RS).

CNN

architecture

Fine-tuning

type

#Layers

finetuned

#Trainable

parameters

(in Millions)

Validation

accuracy

Total FLOPs (in 108) /

FLOPs corresponding

to the learned layers

(in 108)

VGG-16

AutoTune (BO) 3 75.7 82.47 153.6/0.2

AutoTune (RS) 3 42.7 81.83 153.6/0.2

Conventional 3 12.5 79.34 154.6/1.2

ResNet-50

AutoTune (BO) 3 3.1 84.31 38.6/0.6

AutoTune (RS) 4 2.3 83.74 38.5/0.02

Conventional 3 3.9 83.99 38.5/0.03

DenseNet-121

AutoTune (BO) 4 1.1 86.54 28.6/0.5

AutoTune (RS) 3 0.6 85.96 28.3/0.07

Conventional 4 0.47 84.51 28.2/0.1

Table 7

The transfer learning results obtained for Stanford Dogs using the traditional fine-tuning and the proposed AutoTune implemented

using Bayesian Optimization (BO) and Random Search (RS).

CNN

architecture

Fine-tuning

type

#Layers

finetuned

#Trainable

parameters

(in Millions)

Validation

accuracy

Total FLOPs (in 108) /

FLOPs corresponding

to the learned layers

(in 108)

VGG-16

AutoTune (BO) 1 3 81.23 153.4/0.03

AutoTune (RS) 3 42.7 78.21 153.7/0.2

Conventional 1 0.5 78.25 154.6/0.5

ResNet-50

AutoTune (BO) 2 0.55 83.17 38.5/0.005

AutoTune (RS) 2 2.2 82.4 38.5/0.02

Conventional 2 1.3 82.21 38.5/0.5

DenseNet-121

AutoTune (BO) 2 0.58 84.67 28.2/0.005

AutoTune (RS) 2 0.5 83.19 28.2/0.005

Conventional 2 0.16 83.35 28.2/0.02

88.7 parameters, which is 0.26 times fewer than the parameters
involved in traditional fine-tuning.

We have also reported the fine-tuning results obtained for
CalTech-256 and Stanford Dogs datasets in Tables 6 and 7, re-
spectively. We can observe from these tables that the trainable
parameters and FLOPs resulted with the proposed method are
less than the conventional method in most of the cases. It hap-
pens because the last few layers are learned w.r.t. the target
dataset that has less number of training images. On the other
hand, in a few cases (i.e., ResNet-50 and DenseNet-121), the
resulted trainable parameters with our method are slightly high
since we consider additional FC layers in the search space. Fur-
thermore, to demonstrate the sensitivity of the hyperparameters
such as the number of neurons in FC layers, we conduct exper-
iments with VGG-16 by varying the number of FC layers, the
number of neurons in each FC layer. The results are illustrated
in Fig. 4. From this figure, we can observe the validation accu-
racies obtained for CalTech-101, CalTech-256, and Stanford Dogs
datasets using different configurations of FC layers. For example,

fine-tuning (re-training) the weights involved in FC1, FC2, and
output FC layers with 512, 1024, and 101 neurons over the
CalTech-101 dataset results in 93.05% classification performance.
Note that the dropout factor is considered as 0.5 after every FC or
Dense layer except the output FC layer. The significance of learn-
ing the CNN architecture with the knowledge of target dataset is
illustrated in Fig. 5. The sensitivity of the FC layer’s hyperparame-
ters can be observed over the classification performance in Fig. 5.
The above analysis shows that choosing the suitable FC layer’s
configuration leads to improve the generalization ability of the
deep neural network over the target dataset.

7. Conclusion and future work

We propose a novel framework for automatically tuning the
pre-trained CNN w.r.t. the target dataset while transferring the
learned knowledge from the source task to the target task. We
compare the Bayesian and Random search strategies to per-
form the tuning of network hyperparameters. Experiments are
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conducted using VGG-16, ResNet-50, and DenseNet-121 models
over the CalTech-101, CalTech-256, and Stanford Dogs datasets.
The models are originally trained over the large-scale ImageNet
dataset. The experimental results suggest that the tuning of the
CNN layers with the knowledge of the target dataset improves
the transferring ability. Automatically tuning the CNN by utilizing
the knowledge from the target dataset demonstrates a signifi-
cant reduction in the error by 27.4%, 17.9%, and 5.6% over the
CalTech-101, CalTech-256, and Stanford Dogs datasets, respec-
tively. We further observe that the proposed AutoTune improves
performance using both Bayesian and Random search strategies.
Moreover, the proposed AutoTune performs much better than
the conventional fine-tuning of transfer learning as depicted by
the results reported in this study. The FLOPs corresponding to
the CNN that is learned using the proposed approach are also
optimum. In the future, we would like to extend this idea by
employing filter pruning methods after finding the suitable CNN
architecture to discover a light-weight CNN for efficient transfer
learning.
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