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A B S T R A C T

MicroRNAs (miRNAs) and transcription factors (TFs) are the largest families of trans-acting gene regulatory
species, which are pivotal players in a complex regulatory network. Recently, extensive research on miRNAs and
TFs in agriculture has identified these trans-acting regulatory species, as an effective tool for engineering new
crop cultivars to increase yield and quality as well tolerance to environmental stresses but our knowledge of
regulatory network is still not sufficient to decipher the exact mechanism. In the current work, stress-specific TF-
miRNA-gene network was built for Arabidopsis under drought, cold, salt and waterlogging stress using data from
reliable publically available databases; and transcriptome and degradome sequence data analysis by meta-
analysis approach. Further network analysis elucidated significantly dense, scale-free, small world and hier-
archical backbone of interactions. The various centrality measures highlighted several genes/TF/miRNAs as
potential targets for tolerant variety cultivation. This comprehensive regulatory information will accelerate the
advancement of current understanding on stress specific transcriptional and post-transcriptional regulatory
mechanism and has promising utilizations for experimental biologist who are intended to improve plant crop
performance under multiple Abiotic stress environments.

1. Introduction

Plants are exposed to a wide array of environmental fluctuations
that lead to various physiological and metabolic changes, which in turn
adversely affect the growth and productivity. Abiotic stresses are the
principal cause of decrement in crop production globally and are re-
sponsible for lowering the average yield of major crops by>50% [1,2].

To combat the changes in the environment, plants undergo mor-
phological and physiological adaptations which require complex re-
arrangements of gene expression networks controlled at transcriptional
and post-transcriptional level. Transcription factors (TFs) and
microRNAs (miRNAs) are the key players in plant regulatory network.
TFs activate or repress the transcription of their targets transcripts by
binding to their promoter regions whereas miRNAs control the ex-
pression of their targets transcripts by cleavage and translational re-
pression [3,4]. The TFs and the miRNAs control gene expression on
transcriptional and post-transcriptional levels respectively and also
they interact with each other to further fine-tune gene expression [3].
They play essential roles in attenuation of plant growth and develop-
ment under stress condition [5]. For example, miR156 play a critical

role in plant development and phase change by targeting SPL tran-
scription factors [6]. A recent study in Arabidopsis found that miR156-
mediated down-regulation of SPL increased plant response to environ-
mental stresses, including heat stress and heat stress memory [7].
Mir160-mediated regulation of ARF10, ARF16, and ARF17 are involved
in root development and stress response [8]. According to a study,
auxin-induced miR164 helps in maintaining a homeostatic balance
within the auxin signaling pathway by inhibiting NAC1 transcription
factor and thus, down-regulating auxin signaling [9]. At the same time,
the biogenesis and the activities of miRNA themselves were under tight
surveillance transcriptionally or post-transcriptionally [10].

A distinct mechanism was discovered by Franco-Zorrilla et al. [11]
known as “target mimicry” which involves regulation of miRNA ac-
tivities in plants. This mechanism includes another class of RNAs de-
scribed as endogenous target mimics or eTMs [11]. An eTM is generally
a long non-coding RNA (lncRNA), but can also be part of a protein-
coding transcript [12,13]. In the literature, eTMs are also often de-
scribed as miRNA decoys in plants [14] and miRNA sponges or com-
peting endogenous RNA (ceRNA) in animals [15], although these ter-
minologies are now being used interchangeably in plant and animal
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systems. Thus eTMs add a new class to the expanding repertoire of ribo-
regulators and represent an essential component of competing en-
dogenous RNA regulatory network (ceRNET) [16,17].

Based on computational programs and deep sequencing, an im-
mense population of miRNA, TFs and mRNAs were uncovered in dif-
ferent plant species under stress condition; however, there is no study
reported that have aimed to understand a dynamic relationship among
them. To partially address this issue, a semi-experimentally validated
TF-miRNA-gene regulatory network was constructed for differentially
expressed miRNA and genes under abiotic stress condition (drought,
waterlogging, salt and cold). This network contains five types of reg-
ulatory information: miRNA regulating genes, TF regulating genes, TF
regulating TF, TF regulating miRNA genes and target-mimics regulating
miRNAs. To build this network meta-analysis of publically available
abiotic stress transcriptome data was performed for getting differen-
tially expressed mRNA and miRNAs under drought, waterlogging, salt
and cold stress. Then, these miRNAs were subjected to Argonaute 1
(AGO1) enrichment analysis. In addition, those enriched in AGO1 were
considered to have a potential of performing target cleavages and were
included in target prediction and degradome sequencing based vali-
dation. In order to provide another layer for modulating miRNA and
mRNA activities, experimentally validated transcription factors reg-
ulating miRNA and mRNA, target mimics for AGO1 enriched miRNAs
were also searched from the database. Then, we applied concepts from
the theory of complex networks to study the level of connectivity
among the differentially expressed molecular species under abiotic
stress, namely – genes, transcription factors, and miRNAs.

Under stress, all these molecular species are interacting with each
other and hence, there is a continuous signaling occurring among them
within a cellular boundary. This scenario very naturally leads to a
signal-boundary paradigm, a hallmark of various complex adaptive
systems [18]. Such interaction among molecular species through sig-
naling results into a network thereby permitting a structural perspective
of the cellular dynamics.

The term network is an informal description for a set of elements
with interaction between them and in a formal way it is a universal
presentation of complex system that is modeled as graph. Formally a
network N is a four tuple (Vλ,Eλ,ψλ,∧) along with an algorithm A such
that for ∧≠∅ , i∈ ∧ , Vλ is a set of vertices Vi, Eλ is a set of edges Ei, ψλ

is incidence function ψi : E→ [V]2 where [V]2 is the set of not ne-
cessarily distinct unordered pairs of vertices such that (Vi, Ei, ψi) is a
graph given by the algorithm A(i). The incidence function ψ provides
structure to a graph by associating to each edge an unordered pair of
vertices in the graph as ψ(e)= {Vi,Vj} : Vi, Vj∈V, ∀ e∈ E⊆ [V]2. Here i
is the temporal component by virtue of which a network can evolve as
per the given algorithm A [19].

A network is thus an empirical object, the underlying graphs for
which can be either deterministic as completely determined by an al-
gorithm or stochastic as obtained by modeling real world data.
However, a graph is an algebraic object such that an unlabelled graph
represents an isomorphism class of otherwise labeled graphs. We call a
network as static network if the temporal component ∧ consist of single
element i, otherwise the network is a dynamic network [19]. In present
study, we define a miRNA-TF-gene regulatory network N in which Vλ is
the set of molecular species (structural genes, TF and miRNA) differ-
entially expressed under particular abiotic stress, and Eλ is the set of
flows of signal between two different molecular species under the in-
fluence of specific abiotic stress.

The gene regulation by miRNA and TF in Arabidopsis thus forms a
dynamic regulatory network N = (Vλ,Eλ,ψλ,∧) with ∧ consisting of
four different abiotic stresses namely, salt, cold, drought and water-
logging stress. Here the vertices of underlying graphs represent mole-
cular species (structural gene, TF, miRNA) that are connected by edges
if there is experimentally validated evidence on regulatory interaction.

2. Results

2.1. Differential expression analysis

Plants are constantly challenged by a complex array of environ-
mental stresses that require their fast and proper response in order to
adapt and survive. Drought, salinity, cold and waterlogging are four
important abiotic stresses that adversely affect the productivity of
plants. Morphological and physiological adaptations to stress condition
plants undergo several re-arrangements at transcriptional and post-
transcriptional level. In order to canvass these re-arrangements, mRNA
and miRNA differential expression analysis using meta-analysis ap-
proach was performed to find genes and miRNA dysregulated in re-
sponse to these stresses.

2.2. Dysregulated genes under abiotic stress

Arabidopsis thaliana (Arabidopsis) microarray expression data con-
sisting of 22,810 probe sets (genes), 149, 241, 64 and 225 samples
related to cold, drought, waterlogging and salt stress respectively. After
normalization and sample outlier detection 43, 34, 7 and 16 samples
from cold, drought, waterlogging and salt stress respectively were dis-
carded and meta-analysis was performed on remaining datasets. In total
7790 genes were found differentially expressed under at least one stress
with foldchange expression>2 (Supplementary Table S3). According
to results, the maximum numbers of genes were differentially expressed
under cold stress and minimum under waterlogging stress. When dys-
regulated genes were compared across the four stresses it was found
that only 12 genes were commonly expressed across the four stresses,
interestingly, all these genes showed up-regulation under drought stress
but down-regulation under salt and waterlogging stress. Whereas,
under cold, drought and salt stress much higher number of (245 genes)
were commonly dysregulated; among them, only 12 genes had the same
kind of regulation. Under cold and drought stress, the maximum
number of common genes (157) showed conserved expression pattern
whereas under drought and salt stress the maximum number of genes
showed reversed expression pattern. The results showed that 74%
(5748) of total differentially expressed genes were stress specific
(Supplementary Table S3 and Fig. 2). The pathway analysis revealed
that metabolic pathway is commonly affected under all four abiotic
stresses where as cold, drought and salt stress shares several other
pathways like- photosynthesis, plant hormone signal transduction
pathways, MAPK pathway, Circadian rhythmetc. The list of genes and
associated biological pathways information is given in Supplementary
Table S3.

2.3. Dysregulated miRNA under abiotic stress

In the present study, Arabidopsis miRNA expression responses to
drought, salinity, cold and waterlogging stresses were surveyed taking
advantage of the public sRNA HTS data of Arabidopsis. Following the
workflow described in Fig. 1 the miRNAs were identified for control
and each stress samples (Supplementary Table S4) and then raw counts
of identified miRNAs were used to find differentially expressed miRNAs
in response to abiotic stresses. Overall, 110 miRNA's were differentially
expressed in response to at least one abiotic stress under study. The
results showed that under salt stress the highest numbers of miRNAs
were expressed (74: 12 up-regulated, 62 down-regulated) followed by
cold stress (63: 49 up-regulated, 14 down-regulated) but under salt
stress> 80% of miRNAs were down-regulated whereas in response to
cold stress ~ 78% of miRNAs were up-regulated (Fig. 3&Supplementary
Tables S4& S5). On comparing the differential expression analysis re-
sults of individual stresses, it was found that there were no miRNA
common among all four stresses although under cold&drought&salt;
drought&salt&waterlogging and cold&salt&waterlogging combination
20, 1 and 1miRNAs were commonly expressed respectively (Fig. 3) and
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certain miRNAs were also found which showed expression specific to
stress.

2.4. Argonaute 1 (AGO1) enrichment analysis

In plants, miRNAs, exert their regulatory activities through target
cleavages. The miRNA incorporate into specific complexes (RISCs) and
guide the complexes to the target transcripts to perform cleavages. It
has been reported that AGO1 is an RNA slicer selectively recruiting
miRNAs and short interfering RNAs in plants [38]. In this considera-
tion, AGO1-enriched miRNAs were identified. As a result, 92 AGO1-
enriched miRNAs were extracted from differentially expressed miRNAs
in response to abiotic stresses (Supplementary Table S6).

2.5. Identification of the targets of the AGO1-enriched miRNAs

Aforementioned, the miRNA allied with the AGO1 silencing com-
plexes are more likely to alter gene expression through cleavages. In
this analysis, targets were predicted only for the AGO1-enriched
miRNAs. psRNAtarget, a web-based online search tool with default
parameters was used to predict the targeted transcripts. As a result, 646

target binding sites were predicted for 92 AGO1-enriched miRNAs ex-
pressed under abiotic stresses (Supplementary Table S7).

Degradome sequencing data is a valuable resource for large-scale
validation of the miRNA-target duplex interactions [39]. Previous stu-
dies established that the 5′ ends of miRNA-cleaved mRNA fragments
would correspond to the nucleotide that is complementary to the 10th
nucleotide of the miRNAs. Therefore, the cleaved RNA targets should
have distinct peaks in the degradome sequence tags at the predicted
cleavage site relative to other regions of the transcript [28,39]. In the
present study, 14 degradome sequencing datasets of Arabidopsis were
assigned to do a comprehensive validation of the predicted targets
using CleaveLand4 version 4.4 pipeline. Abundance of the sequenced
tags was plotted on each transcript and the cleaved target transcripts
have been grouped into five categories based on the relative abundance
of the degradome tags mapping at the miRNA target site through the
height of the degradome peak at each occupied transcript position
(Categories 0, 1, 2, 3 and 4) (Supplementary Table S8).

In total, 123 psRNAtarget predicted (AGO1-enriched) miRNA-target
interaction was validated by degradome sequencing data analysis from
which 61 were classified as category 0, 2 as category 1, 38 as category
2, 3 as category 3 and 19 as category 4. Category 0:> 1 raw tags at the

Fig. 1. Workflow for sRNA transcriptome data analysis and their target validation.
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position, abundance at the position was equal to the maximum on the
transcript, and there is only one maximum on the transcript; category
1:> 1 raw tags at the position, abundance at the position was equal to
the maximum on the transcript; and there was more than one maximum
position on the transcript; category 2:> 1 raw tags at the position,
abundance at the position was less than maximum but higher than the
median for the transcript; category 3:> 1 raw tags at the position,
abundance at the position was equal to or less than median for tran-
script; category 4: only 1 raw tag at the position. The validated inter-
actions involved 85 genes and 60 miRNAs highly abundant under the
influence of abiotic stresses (Supplementary Table S9).

The validated miRNA target genes were found to be involved in
Ubiquitin mediated proteolysis, Plant hormone signal transduction,
ABC transporters and metabolic pathways (Supplementary Table S9).

2.6. Abiotic stress specific TF-miRNA-gene network realization

miRNA-TF induced regulatory networks were constructed for all
four abiotic stresses under study. Each stress specific network is a
combination of five types of regulatory information: miRNA regulating
genes, TF regulating genes, TF regulating TF, TF regulating miRNA
genes and target-mimics regulate miRNAs. The experimentally vali-
dated TF regulation for differentially expressed (DE) genes and miRNAs
and target-mimics for DE miRNA were fetched from publically available
databases (Fig. 4). And miRNA-target interactions were validated by
degradome sequence data analysis. The final network of miRNAs, gene,
and TF proteins are the large directed graphs consisting of (2058,
3720), (1971, 3807), (1865, 3787) and (251, 401) nodes-edges pair in
cold, drought, salt and waterlogging stress specific regulatory networks

respectively. To examine the constructed networks are random or
complex or regular type of network, their degree distribution was stu-
died in the context of the power law.

Maximum likelihood estimation was used to estimate the value of
exponent α and Kolmogorov-Smirnov method was used to find ymin for
all four networks in-degree and out-degree distribution. The values of
y > ymin and corresponding degree sequence of the underlying graphs
for the networks was plotted separately on a double logarithmic scale
(Fig. 5). All four networks in-degree and out-degree distribution plot
follow a straight line that shows scale-free nature of the networks. Hubs
in a scale-free network are the nodes with the highest degree. We
measured the degree share of hubs as the ratio of the degree of a node to
the total number of nodes in a network and found that the nodes with
the highest degree have> 40% of degree share in all the four networks.

The assortativity for all four networks was calculated and found
negative values of assortative mixing for in-in, out-out, in-out and out-
in degree pairs across the networks which demonstrated the presence of
interaction between nodes having the higher degree with nodes having
lower degree (Table 1). It showed disassortative nature of networks
which implies in case of failure of high degree nodes (hubs) the network
is likely to become disconnected. We computed transitivity (TG) and
average shortest path length (ASLG) for four TF-miRNA induced stress-
specific networks under study and compared their values with transi-
tivity TER and average shortest path length ASLER of Erdos-Renyi
random network of same order and sizes. Then calculated small-world-
ness (S) for cold, drought, salt and waterlogging stress-specific reg-
ulatory network based on the formula given in eq. 1. It was found, all
four networks have value>1which implies that all four networks
under study possess the small-world property. The computed values are
summarized in Table 2.

A scale-free network having high clustering and, if the average
clustering coefficient C(N) follows inverse proportional trend line with
the degree of nodes then the network is also said to have hierarchical
organization and hence modularity [40]. For all four stress-specific TF-
miRNA-gene regulatory networks we found aforesaid scaling and the
value of linear correlation coefficient between clustering coefficient and
degree were 0.875, 0.875, 0.880, 0.836 and 0.697 for cold, drought,
salt and waterlogging stress-specific regulatory network respectively,
thus revealed a linear correlation between degree and clustering coef-
ficient. Indeed, most of the transcription factors with a few edges (small
N) regulate one gene (TF or non-TF) or miRNA. Each such transcription
factor ‘t’ has a clustering coefficient equal to one, as all transcription
factors ‘t’ have interaction to are part of the same regulatory pathway,
and are therefore connected to each other. The high degree nodes are
transcription factor which regulates many genes or miRNA, which are
the part of different regulatory pathways and hence, their neighbors are
not necessarily connected to each other, consequently, they have
smaller clustering coefficient.

We calculated centralities for the network and determined the most
central molecular species (miRNA/TF/gene). The list of top ten mole-
cular species based on network centralities for cold, drought, salt and
waterlogging stress specific regulatory network were given in
Supplementary Table S10.

A graph has a strongly connected component (SCC) if there is a path
in each direction between each pair of nodes [41]. It can be easily
understood that only miRNAs and TFs could be present in the SCC. Non-
TF genes cannot be included as they don't regulate any other molecule.
It was found that there were three SCC in drought- and salt-, two SCC in
cold- and one SCC in waterlogging- stress specific regulatory network. It
was noted that miRNA159a and miRNA172c are member of SCC in
cold, drought and salt- stress specific regulatory network. A list of the
TFs and miRNAs present in the SCC can be found in Supplementary
Table S11. Functional annotation and literature survey indicated the
role of these miRNA and TFs in hormone activated signaling pathways,
flower development, cell fate specification and their expression im-
proves tolerance to several abiotic stresses.

Fig. 2. Venn diagram for differentially expressed genes under drought, cold,
waterlogging and salt stress in Arabidopsis.

Fig. 3. Venn diagram for differentially expressed miRNA under drought, cold,
waterlogging and salt stress.
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3. Discussion

The objective of this work was to reconstruct abiotic stress-specific
miRNA-TF regulatory interaction network of Arabidopsis in response to
four of the most important environmental stresses that affect agri-
cultural productivity, namely; cold, drought, salt and waterlogging
stress using meta-analysis approach. A meta-analysis is a statistical
approach for combining the results of multiple studies. It has been used
to determine the genes differentially expressed under abiotic stress
condition in recent studies [42–44]. We took advantage of the public
abiotic stress-related mRNA microarray and sRNA HTS data of Arabi-
dopsis to find dysregulated genes and miRNA under cold, drought, salt
and waterlogging stress. It was observed that a large number of genes
(245) and miRNAs (20) were commonly differentially expressed under
cold, drought and salt stress as compared to only 12 genes and no
miRNAs were commonly expressed with waterlogging stress. This in-
dicates sharing of same stress signaling pathways under cold, drought
and salt stress which are different from pathways affected by water-
logging stress, this is further validated by presence of CYCD3
(AT4G34160), AUX1(AT5G01240), AUX/IAA (AT5G43700), CRE1
(AT5G35750), ARR-1 (AT2G41310) and PYR/PYL (AT5G53160) plant
hormonal signal transduction pathways related genes and group of
miRNAs (miR163, miR165, miR166, miR169, miR172, miR395 and

miR399) among commonly expressed genes and miRNA under cold,
drought and salt stress. CYCD3 encodes a cyclin D-type protein involved
in cell division [45], AUX1 is an auxin influx carrier and AUX/IAA is an
auxin-responsive protein which together participates in cell enlarge-
ment and plant growth [46,47], CRE1 encodes histidine kinase- a
membrane-bound cytokinin sensor and ARR1 encodes an A- type re-
sponse Regulator under abiotic stress condition, they form two com-
partment system that transduces extracellular signals to cytoplasm
through phosphotransfer between two components [48]. And PYR/PYL
is an abscisic acid receptor which interacts with clade A protein phos-
phatase 2Cs (PP2Cs) and inhibits its activity. Inhibition of the PP2Cs
then leads to the activation of the SnRK2 family protein kinases that
phosphorylate and activate downstream effectors involved in cold,
drought and salt stress adaptation, like - guard cell slow anion channel
named, SLAC1, required for stomatal closure under stress conditions
[49]. Recent studies suggested that families of miRNAs which we found
commonly expressed in at least two stress conditions under study are
highly conserved and commonly expressed under various abiotic
stresses in plants but their differential expression dependents on the
specific stress condition [50]. For example, we found that miR169 in-
hibited by drought but induced by salt stress. The target of miR169,
nuclear factor Y (NF-Y) subunit A 5 (NFYA5 (AT1G54160)) was found
to be significantly induced under drought but repressed under salt

Fig. 4. Workflow describing data preprocessing, integration and induction for TF-miRNA-gene regulatory network generation for Arabidopsis under abiotic stress.
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stress. Arabidopsis plants with the NFYA5 knockout or over-expressing
miR169 showed sensitivity to drought stress and enhanced water loss
whereas, over-expressing NFYA5 transgenic Arabidopsis plants showed
resistance to drought stress [51] and it was reported that under salt
stress miR169 was induced and its target was repressed [52].

To gain more insight about the key players and regulatory

mechanism functional under the influence of abiotic stresses, we built
the abiotic stress specific experimentally validated miRNA-TF-gene
regulatory network for aforementioned differentially expressed genes
and miRNA under abiotic stresses where interaction among these three
molecular species was assembled using degradome sequencing data and
several databases. The network structural measures study revealed that

Fig. 5. Plot of degree sequence on a double logarithmic scale is found to be a straight line for each stress in-degree and out-degree showing Scale-free behavior of
networks.
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all four regulatory networks are scale-free and have small world effect.
This reflects several important features of the networks like- stability,
invariant to changes of scale and an efficient, quick flow of signals
within the network, which showed that the networks are highly robust
and can cope with a relatively high amount of perturbations in single
genes. That mean, if the failure occurs at random then it rarely causes a
dramatic change in properties such as - average short path length and
clustering coefficient. This follows from the fact that shortest paths
between nodes flow through hubs, and if a non-hub node is deleted it is
unlikely to interfere with the path between other non-hub nodes. As the
fraction of non-hub nodes in a small world network is much higher than
the fraction of hubs, the probability of deleting an important node is
very low and if hub failure occurs then also network will generally not
lose its connectedness because of the other hubs [53].

We computed various centrality measures that highlighted im-
portant transcription factors and miRNAs playing a crucial role in
maintaining homeostasis and efficient flow of signal when plant ex-
periences environmental stress. For instance, the TFs and miRNAs
which best ranked for degree centrality are actually the hubs in the
network. A comparative study showed that most of these hubs are
conserved across all four stresses and literature survey illustrated their
participation in calcium- and hormonal- signaling pathways, vegetative

phase change regulation, transition to flowering, xylem formation,
circadian clockwork etc.

It was observed that the TFs which are not hubs but are top-ranked
according to betweenness centrality and closeness centrality are im-
portant because they lie on communication paths and can control in-
formation flow. They act as a relay point for passage of signal between
hubs. This is especially true for all four stress-specific regulatory net-
works under investigation for the reason that the hubs in these net-
works tend not to be linked as indicated by negative values of assor-
tativity. For example, a transcription factor AG (AT4G18960), it
interacts with two hub transcription factors namely, LFY (AT5G61850)
with 470 neighbors and SEPALLATA3 (AT1G24260) with 911 neigh-
bors (Fig. 6). LFY and SEPALLATA3 transcription factors are known for
their role in flower development pathway [57]; [54]; [55]. LFY was
also found regulating expression of several other transcription factors
and miRNAs which play role in multiple abiotic stresses like- RAP2.2,
WRKY15, DREB19, DREB26, DREB2A, miR156, miR160, miR169 etc.
[58–60]. It activates the expression of AG transcription factor that
further regulates the expression SEALLATA3 transcription factor which
has a vital role in floral organ identity [57]. Thus, AG is acting as a relay
point between two hubs that coordinating timely flowering process
under the influence of several environmental stresses.

We also explored strongly connected components (SCC) in cold,
drought, salt and waterlogging stress-specific regulatory networks. The
largest SCCs were of size 23 in drought and cold, 17 in salt and 8 in
waterlogging stress specific network. It was found that miR159 and
miR172c were commonly present in SCC of cold, drought and salt
stress-specific regulatory networks which reflect their important role in
multiple abiotic stresses. Both were also top-ranked according to be-
tweenness centrality in aforementioned networks that indicated their
vital place in the networks to facilitate the process of propagation or
spread of signal across the network. miR159 is known to post-tran-
scriptionally regulate MYB gene and function in leaf, flower and seed
maturation. According to a study on transgenic rice plants, over-ex-
pressing miR159 were sensitive to heat stress which indicate under-
expression of this miRNA may contribute to heat stress tolerance [61].
miR172 regulate mRNA of a floral homeotic gene AP2 that involve in
floral development [6]. It regulates its target by translational inhibition.

Fig. 6. Interaction of transcription factor AG with two other hub transcription factors LFY and SEPALLATA3.

Table 1

Topological attributes of the TF-miRNA-gene network of Arabidopsis for
cold,drought, salt and waterlogging stress.

Topological attributes Cold Drought Salt Waterlogging

No. of edges 3720 3807 3787 401
No.of nodes 2058 1971 1865 251
Largest SCC size 17 23 23 8
Graph diameter 9 9 10 6
Characteristic path

length
3.22 3.586 3.526 2.635

Average number of
neighbors

3.594 3.84 4.038 3.1

Assortativity (In-In) −0.0354 −0.52194 −0.46251 −0.211976256
Assortativity(In-Out) −0.00168 −0.00069 −0.0015 −0.014040488
Assortativity(Out-In) −0.4787 −0.50506 −0.44583 −0.399855057
Assortativity(Out-Out) −0.46335 −0.02343 −0.03429 −0.168572516

Table 2

Calculations of small-world-ness of the four miRNA-TF-gene regulatory networks.

Network Transitivity_network Transitivity_random ASD_network ASD_random Swness

Drought 0.011473526 0.002489971 2.808114616 5.601384543 9.191432
Salt 0.012588448 0.002334176 2.822705358 5.280555524 10.0891
Water 0.075114793 0.009844135 3.089243028 4.273848606 10.55638
Cold 0.010326638 0.001355524 2.832328681 5.676242634 15.26754

R. Sharma, et al. Genomics 112 (2020) 412–422

418



According to a study by Nova-Franco et al. Up-regulation of miR172c
enhanced root growth, improved rhizobial infection, improved nodu-
lation and hence nitrogen uptake [62]. Several studies reported the
significant expression of miR159 and miR172c under multiple abiotic
stress and their proven role in plant development showed their im-
portance and need of further in-depth study for revealing their function
in improving tolerance to various abiotic stress [50,60].

4. Material and methods

4.1. Data sources

High-throughput sequencing datasets of Arabidopsis sRNAs and
microarray-based (GPL198) mRNA expression were retrieved from GEO
(Gene Expression Omnibus; http://www.ncbi.nlm.nih.gov/geo/) and
ArrayExpress Archive (https://www.ebi.ac.uk/arrayexpress/) per-
taining to waterlogging, cold, drought and salt stress conditions
(Supplementary Table S1).

The AGO1-associated sRNA HTS datasets was downloaded from
GEO. GSM707682, GSM707683, GSM707684, GSM707685 and
GSM253622 samples were prepared from the Arabidopsis AGO1protein
which belongs to GSE28591 and GSE10036 series.

The Arabidopsis degradome sequencing datasets - SRP033352,
SRP022925, SRP078966 and SRP055491 (Supplementary Table S2)
were downloaded from EMBL European Nucleotide Archive (http://
www.ebi.ac.uk/ena).

The miRNA sequences were obtained from miRBase (release 21;
http://www.mirbase.org/) [20]. The transcripts of Arabidopsis genes
and the gene annotations were retrieved from The Arabidopsis In-
formation Resource (TAIR), release 10 https://www.arabidopsis.org/
[21].

4.2. Accumulation of dysregulated genes and miRNAs related to abiotic

stress

4.2.1. Differentially expressed genes by meta-analysis of abiotic stress

mRNA expression data

The mRNA stress-wise expression datasets were normalized using
GCRMA R package [22] and outlier samples were detected by Array-
QualityMetrics R package [23]. Then, differentially expressed genes
were determined by the function RPadvance in the Bioconductor
package [24] and pathway analysis using KEGG database [25].

4.2.2. Differentially expressed miRNAs by analysis of miRNA-Seq data

The raw reads from HT sequencing were first subjected to the pre-
processing analysis, which includes adaptor/barcode trimming, getting
rid of the low-quality tags and sequence quality check. After getting the
clean reads, the length distribution of the clean tags and common and
specific sequences between samples were summarized. rRNA, scRNA,
snoRNA, snRNA, tRNA, exon, intron and repeat sequence tags were
removed based on GenBank (http://www.ncbi.nlm.nih.gov/GenBank/)
and Rfam (12.2) database (http://rfam.sanger.ac.uk/). The pre-pro-
cessed reads were aligned to reference genome (TAIR10) and co-
ordinates were extracted in internal BED format. The coordinates were
then compared to Arabidopsis miRNA GFF file and different measures
of the expression level are generated like the read count (total number
of reads assigned to the reference RNA), adjusted read count (read
count normalized by the number of times that the read maps to the
library or the genome) and normalized RPM (reads per million). The
mapping and read count calculation were done by miRanalyzer [26].
EdgeR and DeSeq were used for differential expression analysis of
miRNA pertaining to waterlogging, drought, cold and salt stress con-
ditions (Fig. 1).

4.3. Identification of AGO1-enriched differentially expressed miRNA

The differentially expressed miRNAs from various abiotic stresses
were subjected to AGO1-enrichment analysis by applying following
rules: 1) the miRNA should be detectable in at least one of the AGO1-
associated sRNA HTS data sets 2) its normalized accumulation levels
should be 3 RPM or higher.

4.4. Building the TF-miRNA induced regulatory network

4.4.1. miRNA-gene data

The AGO1-enriched miRNAs were subjected to target prediction by
the psRNATarget tool [27] using default parameters. The degradome
sequencing data were utilized to validate the predicted miRNA-target
duplexes. The degradome sequencing data were analyzed by Cleave-
Land v4.4.4 [28]. This tool removes structural RNAs from degradome
data and then aligns it to reference transcriptome using Bowtie.
Alignment parameters allow zero or one mismatch and are only allowed
to the forward strand of the transcriptome then the alignments are
parsed to quantify the density of observed 5′ ends at each nucleotide of
the transcriptome and create degradome density files. For each exact
match to the sense strand of an mRNA transcript, a 26-nt long query
mRNA subsequence is generated by extracting 13-nt long sequences
upstream and downstream of the location of the 5′-end of the matching
degradome sequence. The query sequences are aligned to small RNA
sequences using GSTAr.pl (generic small RNA transcript Aligner) which
is based on RNA-RNA thermodynamic prediction. All alignments
having the 5′-end of the degradome sequence coincident with the 10th
nucleotide of the complementarity to the small RNA are retained. To
differentiate spurious results from real targets, the pipeline re-runs
using randomly shuffled small RNA sequences to estimate signal-to-
noise ratios.

In order to provide another layer of miRNA activities modulation,
target mimics were fetched from PeTMbase (Plant endogenous target
mimics database) [29].

4.4.2. TF-gene data

TFs are the most important regulators function as terminal trans-
ducers and directly regulate expression of several downstream genes.
They also act as inter-mediators of the secondary gene regulation by
miRNAs and other TFs. Their activities determine how cell function and
respond to the environment. We extracted experimentally validated
transcription factors regulating all the differentially expressed genes
found in the meta-analysis of abiotic stress related mRNA expression
datasets from AtRegNet database [30]. We also extracted the TF-TF
relationship from the same database.

4.4.3. TF-miRNA data

The experimentally validated transcription factors regulating all the
differentially expressed AGO1-enriched miRNAs from AtmiRNET da-
tabase [31].

4.5. Computation of network measures

4.5.1. Scale-free behavior identification

The scale-free behavior of the networks were studied by degree
distribution plot for in-degree and out-degree separately and all the
required calculation were done as pervious work [19].

4.5.2. Small-world behavior identification

A network behaves as a small-world if any node in the network can
be reached by any other node in the network by traversing a path
consisting of only a small number of vertices. It is observed that average
shortest distance (ASD) is similar for a complex network and Erdos-
Renyi random network of same order and size but clustering coefficient
(CG) and transitivity (TG) of the complex network is higher than that
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for the Erdos-Renyi random network (CER) and (TER) [32,33].
The small-world-ness (S) can be defined as

= ×
×

S
T ASL

ASL T
G ER

G ER (1)

Where ASLG and ASLER are average shortest path length for the
given network G and Erdos-Renyi random network (ER) of same order
and size. If the value of small-world-ness (S) is greater than one then
network is said to have small world behavior.

Clustering coefficient for the directed network can be defined as
[34]:
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And transitivity for directed network can be defined as:
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Where,
ti is the number of directed triangles around ‘i’
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N is total number of nodes in a network.
Kiout is the out-degree of ‘i’ node.
Kiin is the in-degree of ‘i’ node.
axy and axy is the connection status between ‘x’ and ‘y’ in both

direction.

4.5.3. Assortative mixing

Assortativity is a graph metric which represents to what extent
nodes in a network associated with other nodes in the network, being of
similar sort or being of opposing sort. Generally, the assortativity of a
network is determined for the degree of the nodes in the network.
According to which, in a network if nodes of higher degree on average
connected to nodes of higher degree and lower degree nodes on average
connected to lower degree nodes then the network show assortative
mixing and if higher degree nodes on average connected to low degree
nodes then the network is called disassortative. This concept was given
by [35].

Assortative mixing is calculated as
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Where, ji and ki are the degrees of the node at the end of the ith edge
where i=1……..M.

Assortativity is expressed as a scalar value, r, in the
range− 1≤ r≤ 1.

4.5.4. Network centrality calculation

In a network, some nodes are more important than others. Network
centrality measures give a way to quantify the different ways that a
node can be important. To find important nodes (representing – gene,
miRNA or transcription factor): degree centrality, betweenness cen-
trality, and closeness centrality were computed for all four regulatory
networks.

The degree is a centrality measure that counts how many neighbors
a node has. In case of a directed network, it is of two types: In-degree
(number of incoming links) and out-degree (number of outgoing links).
The degree centrality can be computed as marginal of adjacency matrix
B. If we consider directed links (i, j) are ordered from i to j then,

In-degree centrality,

∑=
∈

C (i) B XD
j N

ji jIN

Out-degree centrality,

∑=
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j N

ij jOUT (5)

Where N is the total number of nodes present in a network and X is a
vector with each entry as 1.

Betweenness centrality is based on communication flow [36]. It
measures the number of times the information passes through a node
laying in the shortest paths between two nodes. Hence, the betweenness
(δUV(N)) of a node (N) is calculated considering couples of nodes (U, V)
and counting the number of the shortest paths linking those two nodes,
which pass through node N.

=δ (N) σ (N)/σUV UV UV

Where σUV is the number of all shortest path between U and V. The
betweenness centrality of a node is given as:

∑=
≠ ≠

C (N) δ (N)B
U V N

UV (6)

Closeness centrality is a measure which estimates how fast the flow
of information would be through a given node to other nodes. It con-
siders a node more central if the total sum of the distance from the
given node to all other nodes is minimum.

∑=
∈

C (i) 1/dist (i, j)C

j J (7)

Where dist (N, i) is the distance between node i and j [37].

4.5.5. Strongly connected component identification

A strongly connected component of a directed graph G is a maximal
set of vertices C⊆ V such that for every pair of nodes i and j, there is a
directed path from i to j and a directed path from j to i.

All the network measures were calculated in MatLab release 2017a.

5. Conclusion

Gene expression regulation is accomplished by a complex network
of various regulatory elements, like, chromatin modification, tran-
scription, post-transcriptional modification, translation, regulation by
other non-coding RNAs (lncRNA) etc. Gene expression variation re-
sponding to environmental stresses helps the plant to adapt and survive.
However, the underlying gene regulatory networks controlling gene
expression is largely unexplored. In the present work, we reconstructed
abiotic stress-specific miRNA-TF-gene regulatory network.
Nevertheless, the various network structural measures study of the four
different stress-specific miRNA-TF-gene regulatory networks appears to
enlighten some significant findings. All four networks were found to be
scale-free, represent small-world and have a hierarchical organization
which reveals the stable nature of the networks where the efficient and
quick flow of information occur by multilevel propagation of dereg-
ulatory signals. It also gave hints about important genes, TFs, and
miRNAs shared by multiple stresses acting as a hub or relay point for
signal transmission. This opens a new scope to further study this genes/
TF/miRNA to prove their potential role as a target for cultivating
multiple stress tolerant variety.

The links in all four networks are locally dense due to high clus-
tering noticed because of small-world nature of networks. We conse-
quently inferred that efficient and quick flow of signals occurs within
the network. It was also observed that for all four networks the clus-
tering coefficient varies as the inverse of degree for a node which is the
indication of hierarchical organization. This further implies that there is
a multilevel propagation of regulatory signal under stress. A small
number of differentially expressed molecules (TFs or miRNAs) have a
cascading effect leading to further regulation of a large number of other
molecules (stress-responsive genes) in response to stress.

To summarize, in present work we have provided some structural
insights into the cellular dynamics in the context of multiple abiotic
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stresses, which emphasize the role of miRNAs and TFs as mainstream
regulators of gene expression.
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