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Abstract

The performance (sensing/actuating) of a piezotransducer highly depends upon the ability of the bond layer to transfer

the stress and strain (through shear lag mechanism) between the transducer and the structure. Therefore, the coupled

electromechanical response of the piezotransducer should consider the effect of dynamic behaviour, geometry and com-
position of the adhesive layer used to bond the transducer patch on the structure. This article presents a new refined

analytical model for inclusion of the shear lag effect in modelling of adhesively bonded piezoelectric ceramic (lead zirco-

nate titanate) patches for consideration in the electromechanical impedance technique. The previous models neglected
the inertial term in shear lag formulations for simplicity. The present refined model, on the other hand, considers the

inertial and the shear lag effects simultaneously, and is therefore more rigorous and complete. In this article, the formula-

tions are first derived for one-dimensional case, and then extended to two-dimensional lead zirconate titanate–structure
interaction. The overall results are found to be in better proximity to experimental observations. The refined formula-

tions are employed for a detailed stress analysis of the bond layer. The article concludes with a parametric study on the

influence of various sensor parameters on the electromechanical impedance signatures.

Keywords

Electromechanical impedance technique, adhesive bond, shear lag, conductance, susceptance, structural health monitor-

ing, shear lag

Introduction

This article derives a new refined analytical model for

incorporating shear lag effect in adhesively bonded lead

zirconate titanate (PZT) piezo-ceramic patches perti-

nent to the electromechanical impedance (EMI) tech-

nique. During the last two decades, the EMI technique

has emerged as a competitive and prospective technique

for structural health monitoring (SHM) and non-

destructive evaluation (NDE) for wide spectrum of

structures (Ayres et al., 1998; Bhalla and Soh, 2004a,

2004b; Lim et al., 2006; Park et al., 2006; Shanker et al.,

2011; Soh et al., 2000). In this technique, a surface-

bonded PZT patch captures the structural dynamic

information of the host structure in the form of admit-

tance signature (comprising of conductance, the real

part, and susceptance, the imaginary part), over a pre-

set frequency range running from few tens of kilohertz

to few hundreds of kilohertz (generally between 30 and

400 kHz). Any damage to the structure, even if highly

incipient in nature, alters the admittance signature dis-

cernibly, thereby enabling its timely detection. Over the

last one and half decades, the technique has established

its potential as a viable high-resolution damage diagno-

sis technique, driven by active theoretical research and

development of low-cost hardware adaptations (Bhalla

et al., 2009a; Overly et al., 2008). The adhesive bond

forms an interfacial layer of finite thickness between the

patch and host structure. The adhesive does not change

the material properties of adherents, and attaching the

PZT patches using adhesives enables a broader range of

applications than other bondings (Wang and Zeng,

2008). The mechanical and geometrical properties of

the adhesive bond layer affect the overall performance

of the PZT–structure interaction model (Dugani, 2009).

The working of the EMI technique can be described

by following governing equation derived by Liang et al.
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(1994) for a PZT patch bonded to one-dimensional

(1D) structure, as shown in Figure 1

�Y = 2v
wl

hp
(eT

33
� d2

31
)+

Za

Zs + Za

� �

d2
31
YE

tan kl

kl

� �� �

ð1Þ

where �Y is the complex electromechanical admittance,

v is the angular frequency, w is the width of the patch,

l is the half length, hp is the thickness, eT
33
= e

T
33

1� djð Þ
is the complex piezoelectric permittivity (d being the

dielectric loss factor), YE = YE
1+hjð Þ is the complex

Young’s modulus (h being the mechanical loss factor),

Za is the mechanical impedance of the PZT patch, Zs is

the mechanical impedance of the host structure and k is

the wave number. This equation couples Zs (mechani-

cal impedance of the structure) to the electromechani-

cal admittance �Y , which means that any damage to the

structure (change of Zs) will reflect itself as change in
�Y , thereby providing indication of the damage.

The main limitation of Liang’s model, however, is

that it considers the PZT patch to be connected to the

structure at its ends only (Figure 1(b)) and ignores

the presence of the adhesive as the bond layer. On the

other hand, in actual PZT–structure system, where a

finitely thick bond layer connects the PZT patch to

the structure, the force/strain transfer takes places as

illustrated in Figure 2, with the bond layer under-

going shear deformation. As a result, if the PZT

patch is employed as an actuator, the deformation on

the surface of the structure is lesser than that at the

end of the patch (i.e. referring to Figure 2, uo\ upo).

Similarly, when used as a sensor, strain on the surface

of the host structure is not fully transferred to the

PZT patch. Considering the dynamic equilibrium of

an infinitesimally small element of the PZT patch and

the bond layer, following differential equation relates

the mass with the axial and the shear stresses (Bhalla

and Soh, 2004c)

twdx+ dmð Þ
∂
2up

∂t2
=

∂Tp

∂x
hpwdx ð2Þ

where up is the displacement in the PZT patch, dm is

the mass of the infinitesimal element, t is the interfacial

shear stress and Tp is the axial stress in the PZT patch.

Liang’s impedance formulation (equation (1)) ignores

the shear term and assumes that the structure, repre-

sented by impedance Zs, is connected to the PZT patch

at the two ends, as illustrated in Figure 1(b).

Crawley and De Luis (1987) analytically modelled

the actuation of a beam element by an adhesively

bonded PZT patch. Sirohi and Chopra (2000) derived

similar formulations for piezoelectric elements (ceramic

or polymer) employed as strain sensors on beams. In

both cases, the governing factor, called shear lag para-

meter G, was mathematically expressed as

G=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gs

Yphphs
+

3Gswp

Ybwbhbhp

s

ð3Þ

where Gs is the shear modulus of the adhesive; Yb is the

Young’s modulus of elasticity of the beam; hs and hp
are the thicknesses of the adhesive layer and the PZT

patch, respectively; wb is the width of the beam and wp

is the width of the patch. Based on the analysis
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Figure 1. (a) Liang’s 1D impedance model. (b) A PZT patch

surface bonded to the structure.
1D: one-dimensional; PZT: lead zirconate titanate.

Figure 2. Force and strain transfer mechanism through

adhesive bond layer.
PZT: lead zirconate titanate.
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presented by Crawley and De Luis (1987) and Sirohi

and Chopra (2000), the shear lag effect can be deemed

negligible if the condition G\ 30 cm21 is satisfied for

which case, the force is effectively transferred over the

end regions of the PZT patch. However, for G \ 30

cm21, it is not reasonable to ignore shear lag effect.

As far as the EMI technique is concerned, where the

same patch serves as the sensor and the actuator simul-

taneously, understanding of the shear lag effect is much

more important (Abe et al., 2002). For the EMI tech-

nique, Xu and Liu (2002) proposed a model that con-

sidered the bond layer as a single-degree-of-freedom

system. Ong et al. (2002) partially included shear lag

effect by incorporating the effective length parameter

suggested by Sirohi and Chopra (2000) for sensor case

(however, ignoring the actuator effect). Bhalla and Soh

(2004c) were the first to realistically integrate the shear

lag effect in the EMI technique considering both sensor

and actuator effects simultaneously. However, they

simplified equation (2) by ignoring the inertia term

dmð Þ€up. Equation (2) was combined with another equa-

tion adopted from the definition of mechanical impe-

dance, that is

F= Tpwhp = � Zsjvu ð4Þ

where Zs is the mechanical impedance of the structure

and u is the host structure’s displacement. The combi-

nation of the two equations (equations (2) and (4))

resulted in a fourth-order differential equation, which

was solved for u and up. The equivalent mechanical

impedance (incorporating the shear lag effect) was then

obtained as

Zeq = Zs
u(x= l)

up(x= l)

=
Zs

1+ u0o
uo�p

Þ
� ð5Þ

where uo is the end displacement (as shown in Figure 2),

u0o is the edge strain and �p is the shear lag parameter,

defined by

�p= �
wGs

Zshsjv
ð6Þ

where Gs =Gs(1+h0j), h0 being the mechanical loss

factor of the bond layer. The model was thereafter

extended to the 2D case, and the resulting analytical

expression was validated with experimental data. Useful

interpretations as well as parametric studies were arrived

at based on the developed model. The predictions of the

model were independently experimentally verified by

Qing et al. (2006). However, as pointed above, this

model ignored the inertia effect. In addition, strictly

speaking, equation (4) is not valid at the ends of the

PZT patch, which are stress free (Crawley and De Luis,

1987), thus introducing additional error over and above

due to the negligence of the inertia term.

Bhalla et al. (2009b) derived an alternate simplified

shear lag model wherein the adhesive bond layer was

assumed to be connected between the PZT patch and

host structure, such that it transferred the force between

the two through pure shear mechanism, as illustrated in

Figure 3. For this particular mechanism, the equivalent

structural impedance Zs,eq was derived as

Zs, eq =
Zs

1� Zsvhsj

2l2Gs

� �h i ð7Þ

The particular advantage of the simplified model is

its ability in solving the inverse problem, that is, obtain-

ing the true structural mechanical impedance from the

measured admittance signature, thus eliminating the

bond layer’s contribution. The model, when extended

to 2D, yielded results satisfactorily matching with those

of earlier model (Bhalla and Soh, 2004c).

This article presents the development of a new

refined analytical model duly considering the inertia

effect (inertia term of equation (2)), ignored in the pre-

vious models. Furthermore, the effects of the mass of

the adhesive bond layer are also separately included. In

place of using equation (4), the new refined model

makes use of shear force transfer mechanism to arrive

at the second necessary equation, which is more accu-

rate. The next section presents a step-by-step derivation

of the refined model for 1D followed by its extension

to 2D and consideration of additional effects such as

adhesive layer’s mass, parametric study and compari-

son with previous models.

1D refined shear lag formulations

The refined model presented in this article rigorously

considers the inertial term of equation (2) that was

Nodal Line hp

l
u BOND LAYER

up

PZT PATCH

Zs

STRUCTURE

γ

hs

u

Figure 3. Simplified 1D impedance model (Bhalla et al., 2009b).
1D: one-dimensional; PZT: lead zirconate titanate.
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neglected in the previous model of Bhalla and Soh

(2004c). Making substitution for following terms in

equation (2)

dm= rwhpdx ð8aÞ

€up = � v2up ð8bÞ

Tp = YE u0p � L
	 


ð8cÞ

and

t=
Gs up � u

	 


hs
ð8dÞ

where r is the density of the PZT patch, L= d31E3 is

the free piezoelectric strain and Gs is the complex shear

modulus of elasticity of the adhesive bond layer, the

equation can be reduced to a compact form as

�aup � u=
1

q
u00p ð9Þ

where

�a= 1�
rhphsv

2

Gs

ð10aÞ

and

q=
Gs

YEhshp
’

Gs

YEhshp
ð10bÞ

Here, �a can be termed as the inertia parameter. In the

previous model (Bhalla and Soh, 2004c), a value of

unity was considered for a. Bhalla and Soh (2004a)

derived the second necessary equation by considering

equilibrium of forces at a vertical section passing

through the PZT patch, as given by equation (4), which

basically equates the axial force in the PZT patch (neg-

ative sign implies compression) with the product of

mechanical impedance and velocity (note that _u= jvu).

It is assumed herein that Zs is constant over the entire

length of the PZT patch, due to its being infinitesimally

small as compared to the host structure. This equation

however, is not satisfied at the ends of the PZT patch,

where T1 = 0, as imposed by the boundary conditions

that the ends of the PZT patch are stress free.

In this article, however, the second equation is

derived from the shear stress transfer mechanism illu-

strated in Figure 4, which shows the portion of the

PZT patch between coordinates 0 and x. Equating the

shear force transferred between these two coordinates

to the force–impedance relation, we can write

ð

l

x

twdx= Zsjvu ð11Þ

or

ð

l

x

wGs(up � u)dx

hs
= Zsjvu ð12Þ

Differentiating both sides with respect to x, we get

�
wGs(up � u)

hs
= Zsjvu

0 ð13Þ

which can be simplified to

up = u+
u0

�p
ð14Þ

where �p is the shear lag parameter defined by equation

(6). Equations (9) and (14) are the governing shear lag

equations for the new model, with the shear lag para-

meters �p and q same as in the previous model (Bhalla

and Soh, 2004c). Differentiating equation (14) twice

with respect to x, we get

u00p = u00 +
u000

�p
ð15Þ

Eliminating up and u00p from equation (9), making the

use of equations (14) and (15), we get the governing dif-

ferential equation as

u000 + �pu00 � �aqu0 +(1� �a)�pqu= 0 ð16Þ

This is homogenous differential equation, whose char-

acteristic equation is

l3 + �pl2 � �aql+(1� a)�pq= 0 ð17Þ

The above equation is a polynomial equation with

complex coefficients, whose roots l1, l2 and l3 lead to

following solution for u, the displacement on the sur-

face of the host structure.

u=A1e
l1x +A2e

l2x +A3e
l3x ð18Þ

PZT patch

Adhesive

Host structure

x

τ

up

u

Figure 4. Shear transfer mechanism through bond layer.
PZT: lead zirconate titanate.
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where A1, A2 and A3 are constants to be determined

from the boundary conditions. Differentiating equation

(18) with respect to x, we get

u0 =A1l1e
l1x +A2l2e

l2x +A3l3e
l3x ð19Þ

Hence, from equation (14), an expression for up can

be written as

up =A1 1+
l1

�p

� �

el1x +A2 1+
l2

�p

� �

el2x

+A3 1+
l3

�p

� �

el3x ð20Þ

Appropriate boundary conditions are now required

to be imposed to determine the unknown constants A1,

A2 and A3. The first boundary condition is that at

x= 0, u= 0, which leads to (from equation (18))

A1 +A2 +A3 = 0 ð21Þ

The second boundary condition, that is, x= 0,

up = 0 leads to (from equation (20))

1+
l1

P

� �

A1 + 1+
l2

P

� �

A2 + 1+
l3

P

� �

A3 = 0 ð22Þ

The third and the final boundary condition is that

the ends of the PZT patch are stress free (Crawley and

De Luis, 1987), which means that at x = l the strain u0p
is equal to the free piezoelectric strain L= d31E31 (see

equation (8c)). Hence, making use of equation (20)

(after differentiation), we can derive

1+
l1

�p

� �

l1e
l1lA1 + 1+

l2

�p

� �

l2e
l2lA2

+ 1+
l3

�p

� �

l3e
l3lA3 =L ð23Þ

The constants A1, A2 and A3 can now be obtained by

solving equations (21) to (23) simultaneously. Once

determined, the constants can facilitate the determina-

tion of u and up at x = l, from which the equivalent

mechanical impedance (with due consideration of shear

lag effect), can be determined as (Bhalla et al., 2009b;

Bhalla and Soh, 2004c)

Zeq = Zs
u(x= l)

up(x= l) ð24Þ

which, when used in equation (1), in place of Zs, facili-

tates deriving admittance signatures for adhesively

bonded PZT patch for 1D case. The next section

extends the formulations to 2D case, suitable for the

2D effective impedance model of Bhalla and Soh

(2004a, 2004b).

2D extension of refined shear lag

formulations

Bhalla and Soh (2004a) introduced the concept of

‘effective mechanical impedance’ and coined the term

‘effective velocity’ as an alternative to ‘drive point velo-

city’ used previously. Effective impedance is based on

the premise that the transmission of force between the

PZT patch and host structure occurs along the 2D per-

ipheral boundary of the patch bonded to the structure.

Figure 5(a) shows the stresses acting along the bound-

ary of the PZT patch bonded to a structure. For this

configuration, the ‘effective mechanical impedance’ of

the PZT patch can be defined as

Za, eff =

Þ

S

~f :n̂ds

_ueff
=

Feff

jvueff
ð25Þ

where n̂ is a unit vector normal to the boundary and

‘Feff’ represents the effective peripheral force due to

PZT patch’s deformation. ueff = dA=P0 is the effective

(a)

(b)

Host structure

PZT patch
Boundary 

F

E3

l l

l

l

x

y

Nodal line

Nodal line

u1o

u2o

T1

T2

l

l

Area ‘A’

Figure 5. Effective impedance model (Bhalla and Soh, 2004a):

(a) a PZT patch bonded to a host structure and (b) 2D effective

interactions between PZT patch and host structure along the

boundary.
2D: two-dimensional; PZT: lead zirconate titanate.
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displacement, with dA equal to the change in the patch’s

area and P0 is its perimeter in the undeformed condi-

tion. Due to symmetry, considering only one quarter of

the PZT patch (as shown in Figure 5(b)), the effective

displacement of the PZT patch can be simplified as

ueff =
dA

P0

=
u1ol+ u2ol+ u1ou2o

2l
’

u1o + u2o

2
ð26Þ

where u1o and u2o are the edge displacements (see

Figure 5(b)). Consecutively, effective velocity can be

expressed as

_ueff = jvueff ð27Þ

With this definition, the following expression was

derived by Bhalla and Soh (2004b) for

Za, eff =
2hYE

jv 1� yð ÞT
ð28Þ

where y is the Poisson’s ratio of the patch, and the term

T is given by

T =
1

2

tanC1kl

C1kl
+

tanC2kl

C2kl

� �

ð29Þ

where C1 and C2 are the peak correction factors to be

determined experimentally. The mechanical impedance

of structure (Zs, eff ) can be similarly defined, by applying

a distributed effective force along the proposed bound-

ary of the PZT patch. The final expression for admit-

tance for 2D case derived by Bhalla and Soh (2004b)

was

�Y =
�I

�V
=G+Bj=

4vj
l2

h
e
T
33
�

2d2
31
YE

1� yð Þ
+

2d2
31
YE

1� yð Þ

Za, eff

Zs, eff + Za, eff

� �

�T

" #

ð30Þ

Equation (30) is considered in the refined shear lag

model to derive the expression for admittance signature

for 2D case. The instantaneous voltage V across the

PZT patch can be expressed as V =V0e
jvt (V0 being the

peak sinusoidal voltage). For EMI technique, the PZT

patches are excited by very low voltage (usually less

than 1 Vrms) to generate suitable excitation in the host

structure (Park et al., 2000a, 2000b, Park and Inman,

2007; Sun et al., 1995). Hence, for the current analysis,

the value of V0 is taken as 1.41 V (which gives a root

mean square (rms) value of 1 V).

The 2D equilibrium equations (similar to equation

(2) for 1D case) deduced from the free body diagram

(see Figure 6) can be expressed as follows (De Faria,

2003; Zhou et al., 1996)

∂T1

∂x
�
tzx

hp
= r€upx ð31Þ

and

∂T2

∂y
�
tzy

hp
= r€upy ð32Þ

where upx and upy, and T1 and T2 are the displace-

ments and axial stresses on PZT patch along x- and

y-directions, respectively. From 2D PZT–structure

Figure 6. 2D schematic view of PZT–structure interaction model.
2D: two-dimensional; PZT: lead zirconate titanate.
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constitutive relations (Bhalla and Soh 2004a, 2004c),

the stress T1 along x-axis can be expressed as

T1 =
YE

1� y2ð Þ
S1 + yS2 � L 1+ yð Þ½ � ð33Þ

where S1 and S2 are the strains along x- and y-axes,

respectively. Making note of the fact that S1 = u0px, and

differentiating with respect to x, we get

∂T1

∂x
=

YE

1� y2ð Þ
u00px ð34Þ

Substituting equations (34), (8b) and (8d) into equa-

tion (31), and solving, we get

YE

1� y2ð Þ
u00px �

Gs

hphs
upx � ux
	 


= � rv2upx ð35Þ

which can be further reduced as

aupx � ux =
1

qeff
u00px ð36Þ

where

qeff =
Gs 1� y2ð Þ

YEhphs
ð37Þ

which is the 2D equivalent of the shear lag parameter q

for 1D. Similarly, using equation (32), the equation for

y-direction can be written as

aupy � uy =
1

qeff
u00py ð38Þ

Adding equations (36) and (38) and dividing by 2,

we get

a
upx + upy

2

� �

�
ux + uy

2

� �

=
1

qeff

u00px + u00py

2

� �

ð39Þ

Making use of the definition of effective displace-

ment (Bhalla and Soh, 2004a), this can be expressed in

a compact form as

au(p, eff ) � ueff =
1

qeff
u00p, effð Þ ð40Þ

The second governing 2D shear lag equation (equiv-

alent to equation (14) for 1D case), can similarly be

derived, using the concept of effective displacement, as

upx + upy

2

� �

=
ux + uy

2

� �

+

u0x + u0y
2

� �

�peff
ð41Þ

or

up, eff = ueff +
u0eff

�peff
ð42Þ

where

peff = �
2lGs(1+ y)

Zeff jvhs
ð43Þ

where Peff is the equivalent 2D shear lag parameter

(Bhalla and Soh, 2004c)

Equation (43) is the second equivalent 2D shear lag

parameter. Combining equations (40) and (42) as in the

1D case and solving, the governing differential equation

results, as

u000eff + �peff u
00
eff � aqeff u

0
eff + 1� að Þpeff qeff ueff = 0 ð44Þ

For solving the above homogenous equation, its

characteristic equation can be written as

l3 + �peff l
2 � aqeff l+ 1� að Þ�peff qeff = 0 ð45Þ

Now, this expression is similar to the polynomial

equation with complex coefficients for the 1D analysis

(see equation (17)), but the parameters represent 2D

interaction. It has three roots l1, l2, and l3 as for the

1D case. The final solution for ueff and up,eff is similar

to the 1D case with same boundary conditions. The

equivalent effective impedance (Zs,eq,eff,) for 2D refined

shear lag model can thus be determined as

Zs, eq, eff = Zs, eff
ueff (x= l)

up, eff (x= l)

� �

ð46Þ

The above 2D shear lag–based impedance term can

be directly used in equation (30) using Zs,eq,eff in place

of Zs,eff to obtain the admittance signature duly consid-

ering the shear lag effect.

The new formulations derived above were compared

with the results published by Bhalla and Soh (2004b,

2004c). The test structure consisted of an aluminium

block (grade Al 6061 T6), 48 mm 3 48 mm 3 10 mm

in size, instrumented with a PZT patch of size 10 mm 3

10 mm 3 0.3 mm (grade PIC 151; PI Ceramic, 2003),

as shown in Figure 7(a). Table 1 lists the key physical

parameters of the PZT patch, the aluminium block and

the adhesive, considered while deriving the theoretical

signatures. Figure 7(b) shows the 3D finite element

model of a quarter of the test structure (Bhalla and

Soh, 2004b), developed to determine the effective impe-

dance, Zs,eff, for use in deriving the theoretical signa-

tures. Zs,eff was obtained by applying a distributed

harmonic force along the boundary of the PZT patch

(see Figure 7(b)), carrying out dynamic harmonic anal-

ysis, and obtaining the effective displacement ueff,, from

which Zs,eff was obtained as the ratio of the effective

force to the effective velocity (see equation (25)). The
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equivalent effective impedance (taking into consider-

ation the shear lag effect as per the new refined model)

was obtained using equation (46). A bond layer thick-

ness of 0.125 mm was considered with Gs = 1 GPa and

the related mechanical loss factor h# as 10%,

respectively. Figures 8 and 9 show a comparison of the

plots of conductance (G) and susceptance (B), respec-

tively, obtained using present model, over a frequency

range 0–200 kHz with those obtained using the previ-

ous model (Bhalla and Soh, 2004c). It can be observed

that using the new refined model, the peaks of both the

conductance as well as susceptance plots are lower than

the predictions of the previous model, a consequence of

the inclusion of the inertial effects. This can be more

appreciated by the graph shown in part (b) of Figures 8

and 9, where the focus is near the resonance peaks. The

slope of the susceptance plot (Figure 9) also gets low-

ered. Figure 10 compares signatures of the three mod-

els, that is, Liang et al., (1994), Bhalla and Soh (2004c)

and the present refined model. As expected, the predic-

tion of Liang’s model, which takes 1D interaction into

account, is drastically different from the other two

models.

Figures 11 and 12 compare the analytical and experi-

mental conductance and susceptance signatures for two

different bond thickness ratio (hs/hp = 0.417) and (hs/hp

= 0.834), respectively. Since here the PZT patches are

of different thicknesses (0.3 mm and 0.15 mm, respec-

tively), normalized values, that is, Gh/l2 and Bh/l2 are

compared rather than the absolute values. The refined

model eliminates a downward peak around 198 kHz

predicted by the previous model (see Figure 11(b)). The

peaks of both conductance and susceptance plots are

much lower when computed using refined model. From

these comparisons, it can be observed that the present

model is qualitatively much better match with experi-

mental observations. This is because of the more accu-

rate modelling and involvement of the inertia term.

Effect of inclusion of adhesive mass

After properly accounting for inertia effect of PZT

patch, this section goes one step further to include the

mass of adhesive (in term dm of equation (2)) so far not

considered in any previous approach. After considering

the mass of the adhesive, the inertial term of equation

(2) can be rewritten as

I = dmp€up + dms€us ð47Þ

where dmp and dms are the differential masses of the

PZT patch and the adhesive, respectively, and dmp and

dms are the corresponding velocities.

Furthermore

dmp = rwhp ð48aÞ

dms = rswhs ð48bÞ

€up = � v2up ð48cÞ

€us = � v2
up + u

2

� �

ð48dÞ

10 mm 48 mm

48 mm

PZT patch 10 x 10 x 0.3 mm

(a) 

(b)

O
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Origin of 
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Figure 7. (a) Aluminium block structure and (b) finite element

model of a quarter of structure.
PZT: lead zirconate titanate.

Table 1. Parameters of PZT patch, aluminium block and

adhesive bond.

Material Physical parameter Value

PZT patch Electric permittivity
e
T
33 (F/m)

1.7785 3 1028

Peak correction
factor (C1, C2)

0.898

k=
2d231Y

E

ð12vÞ ðN=V2Þ
5.35 3 1029

Mechanical loss factor h 0.0325
Dielectric loss factor d 0.0224

Aluminium
block

Young’s modulus (GPa) 68.95

Density (Kgm23) 2715
Poisson’s ratio n 0.33
Rayleigh’s damping coefficients

a 0
b 3 3 1029

Adhesive Shear modulus (Gs) (GPa) 1
Mechanical loss factor h0 0.1

PZT: lead zirconate titanate.
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where rs is the density of the adhesive. It may be noted

from equation (48d) that average velocity has been con-

sidered for the adhesive layer, assuming a linear varia-

tion from u (at the surface of host structure) to up (at

the bottom of the PZT patch, as can be seen from

Figure 2).With above substitutions, equation (9) can be

modified as

1�
rhphsv

2

Gs

�
rsh

2

sv
2

2Gs

� �

up

� 1+
rsh

2

sv
2

2Gs

� �

u=
1

q
u00p ð49Þ

In compact form, we can write

a0up � bu=
1

q
u00p ð50Þ

where a0 is the modified inertia parameter (see equation

(10a)), given by

a0 = 1�
rhp +

rshs
2

� �

hsv
2

Gs

ð51Þ

and b is the second inertia parameter, given by

b= 1+
rsh

2

sv
2

2Gs

ð52Þ

Similarly, for the case of 2D effective impedance,

equation (35) can be reformed for x-direction as

YE

1� y2ð Þ
u00px �

Gs

hphs
upx � ux
	 


=

�rv2upx � rsv
2

upx + ux

2

� �

ð53Þ
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Figure 8. Comparison of conductance signature with previous analytical model (Bhalla and Soh, 2004c): (a) plot in 0–250 kHz

range and (b) closer view in 150–250 kHz range.

Bhalla and Mohrana 41

 at St Petersburg State University on February 2, 2014jim.sagepub.comDownloaded from 



Hence, equation (40) can be modified as

1�
rhphsv

2

Gs

�
rshphsv

2

2Gs

� �

up, eff�

1+
rshphsv

2

2Gs

� �

ueff =
1

qeff
u00p, eff ð54Þ

a0
eff up, eff � beff ueff =

1

qeff
u00p, eff ð55Þ

where qeff is given by equation (37) and a0
eff and beff

are redefined for the 2D case as

a0
eff = 1�

r+
rs
2

	 


v2hphs

Gs

� �

ð56aÞ

beff = 1+
rsv

2hphs

2Gs

� �

ð56bÞ

The second governing equation of shear lag, namely,

equation (42) will remain unchanged. Combining equa-

tions (42) and (55), eliminating the up, eff , we can obtain

the modified governing differential equation as

u000eff + �peff u
00
eff � a0

eff qeff u
0
eff + a0

eff � beff

	 


�peff qeff = 0

ð57Þ

Repeating the same procedure (with similar charac-

teristic equation and boundary conditions) to solve the

homogenous equation as it was done in the 1D and 2D

case of previous sections, equation (57) can be solved.

Figure 13 shows the plots of G and B based on above

considerations for hs = 0.125 mm and compare them

with those obtained by neglecting the adhesive mass.

On close inspection, it can be observed that the inclu-

sion of the adhesive mass leads to further lowering of

the peaks of G and B and also the overall slopes of B

(a)
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0.00E+00

1.00E–03

2.00E–03

3.00E–03

4.00E–03

5.00E–03

6.00E–03

7.00E–03

0 50 100 150 200 250

S
u

sc
ep

ta
n

ce
 (
S

)

Frequency (kHz)

Present model

Bhalla and Soh (2004c)

3.00E–03

3.50E–03

4.00E–03

4.50E–03

5.00E–03

5.50E–03

6.00E–03

6.50E–03

7.00E–03

150 170 190 210 230 250

S
u

sc
ep

ta
n

ce
 (
S

)

Frequency (kHz)

Present model

Bhalla and Soh (2004c)

Figure 9. Comparison of susceptance signature with previous analytical model (Bhalla and Soh, 2004c): (a) plot in 0–250 kHz range

and (b) closer view in 150–250 kHz range.

42 Journal of Intelligent Material Systems and Structures 24(1)

 at St Petersburg State University on February 2, 2014jim.sagepub.comDownloaded from 



Figure 11. Comparison of conductance of experimental data (Bhalla and Soh, 2004c) with proposed model: (a) normalized

analytical conductance (Refined model) for hs/hp = 0.417 and hs/hp = 0.834, (b) normalized analytical conductance (Bhalla and Soh,

2004c) for hs/hp = 0.417 and hs/hp = 0.834 and (c) normalized experimental conductance (Bhalla and Soh, 2004c) for hs/hp = 0.417

and hs/hp = 0.834.
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Figure 10. Comparison of refined admittance signature with previous analytical model (Bhalla and Soh, 2004c) and Liang et al.

(1994). (a) Conductance vs frequency and (b) susceptance vs frequency.
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slightly. However, at the same time, it can also be noted

that neglecting the mass of the adhesive will not make as

significant difference as neglecting the inertia term.

Hence, the mass of the adhesive can possibly be ignored.

Shear stress profile in bond layer

This section investigates the distribution of the shear

stress within the bond layer, using the refined model

developed in this article. The shear stresses cannot be

measured experimentally for the minutely thick PZT-

adhesive–structure system. Hence, analytical approach

or finite element approach are the only possible ave-

nues for stress analysis. In this investigation, equation

(8d) is employed, by replacing up and u by up,eff and ueff,

respectively. For simplicity, the inertia term associated

with the adhesive is ignored. Figure 14 shows the plot

of the interfacial shear stress as a function of distance,

from x = 0 to x = l at a frequency of 91 kHz (first

resonance peak). It should be noted that this plots

only the absolute values. From the plot, it can be

observed that the stress is zero at x = 0, increases to

the maximum value and then remains constant.

Figure 15 similarly shows a plot of the effective strain

(u0p, eff ) in the PZT patch along the length. The varia-

tion is similar to that of shear stress (Figure 13). The

stresses in the two principal directions in the PZT

patch can be expressed as

T1 =
YE

1� y2ð Þ
u0px + yu0py
	 


� L 1+ yð Þ
� �

ð58Þ

T2 =
YE

1� y2ð Þ
u0py + yu0px
	 


� L 1+ yð Þ
� �

ð59Þ

Adding equations (58) and (59) and dividing by 2,

we get

Teff =
T1 + T2ð Þ

2
=

YE

1� yð Þ
u0p, eff � L
� �

ð60Þ

Figure 16 shows a plot of Teff as a function of x for

the PZT–adhesive–aluminium block system at a fre-

quency of 91 kHz. From Figure 16, it can be noted that

the effective axial stress is maximum at the centre of the

0

0.02

0.04

0.06

0.08

S
u

sc
ep

ta
n

ce
 (

S
 m

–
1
)

Frequency (kHz)

hs/hp= 0.417

hs/hp= 0.834

0

0.02

0.04

0.06

0.08

S
u

sc
ep

ta
n

ce
 (

S
 m

–
1
)

Frequency (kHz)

hs/hp= 0.417

hs/hp= 0.834

0
0

0.02

0.04

0.06

0.08

0.1

S
u

sc
ep

ta
n

ce
  
(S

 m
–
1
)

Frequency (kHz)

hs/hp= 0.417

hs/hp =0.834

)b()a(

(c)

200100

25015010050 200025015010050 2000

Figure 12. Comparison of susceptance of experimental data (Bhalla and Soh, 2004c) with proposed model: (a) normalized analytical

susceptance (refined model) for hs/hp = 0.417 and hs/hp = 0.834, (b) normalized analytical susceptance (Bhalla and Soh, 2004c) for hs/hp =

0.417 and hs/hp = 0.834 and (c) normalized experimental susceptance (Bhalla and Soh, 2004c) for hs/hp = 0.417 and hs/hp = 0.834.

44 Journal of Intelligent Material Systems and Structures 24(1)

 at St Petersburg State University on February 2, 2014jim.sagepub.comDownloaded from 



patch and reduces to zero at the ends. The area under

the curve normalized with respect to Teff l will result in a

parameter similar to the effective length ratio defined

by Sirohi and Chopra (2000) for the sensor case. In the

present analysis, however, both sensor and actuator

effects have been simultaneously considered.

Figure 13. Effect of mass of adhesive on signatures: (a) conductance (b) susceptance.
PZT: lead zirconate titanate.
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Parametric study

This section studies the influence of various physical

parameters on G and B with the aid of the new refined

model presented in this article. The frequency range is

limited to 0–250 kHz, since for most of the civil engi-

neering applications (Soh et al., 2000), a sub-range

within 0–250 kHz is adequate. Again, for simplicity,

the mass of adhesive is ignored for following para-

metric studies. Figure 17 shows the influence of the

bond layer’s shear modulus of elasticity (Gs = 1, 0.5

and 0.05 GPa) on the conductance and susceptance

plots. It is observed that as Gs decreases, the peaks of

both G and B subside down and the overall slope of B

decreases. For very low value (Gs = 0.05 GPa), the sig-

nature tends to be similar to that of the free PZT patch.

The observations are very similar to the previous mod-

els. The influence of bond layer thickness is already

covered in the previous section, as demonstrated by

Figures 11 and 12. As apparent from these figures, the

influence of increasing bond layer thickness is similar

to that of decreasing Gs. Figure 18 shows the influence

sensor length on G and B. For the purpose of compari-

son, normalized values (G/l2) and (B/l2) have been

plotted. It is observed that for small sensor length (l =

5 mm), the signatures are closer to those for perfect

bonding condition; however, the quality of signatures

degrades for longer PZT patches (l = 10 mm). Hence,

Figure 17. Influence of shear modulus of elasticity of bond

layer on EMI signature: (a) conductance and (b) susceptance.
EMI: electromechanical impedance.

Figure 16. Variation of effective stress (Teff) over the length of

PZT patch.
PZT: lead zirconate titanate.

Figure 15. Profile of effective strain (Teff ) over the length of

PZT patch.
PZT: lead zirconate titanate.

Figure 14. Variation of shear stress in bond layer.
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smaller patches should be preferred over longer ones.

This observation is also similar to the previous studies

(Bhalla and Soh, 2004c). Figure 19 shows the influence

of excitation voltage on present shear lag model.

Electric potential has very negligible effect on shear lag

model, as clearly evident from the Figure 19.

Conclusion

This article has presented a rigorously refined new ana-

lytical model for considering shear lag effect in the EMI

formulations. The treatment is complete in the sense

that the model includes the inertial as well as the shear

stress term simultaneously, a feature missing in the pre-

vious models. The results show that it is important to

consider the inertia effect, which has significant influ-

ence on the signatures, especially in terms of lowering

the peak values and the overall slope of conductance

and susceptance. The effect of inclusion of the mass of

adhesive has also been investigated. The results show

that the mass of the adhesive play a negligible role and

can be neglected. The distribution of shear stress and

effective strain in the bond layer and the variation of

axial stresses in the PZT patch have also been investi-

gated for this article. Finally, a parametric study has

also been conducted to study the influence of different

parameters on conductance and susceptance signatures.
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